
Synchronous FIFO
Demonstration

Full or Empty?

Solution: use an extra bit to which cycle the pointer is on

write cycle = 1 read cycle = 0 write cycle = 0 read cycle = 0

FULL when write_cycle != read_cycle EMPTY when write_cycle == read_cycle

SystemVerilog Microarchitecture
Challenge

10/26/2025

The Challenge

● Write a pipelined block that computes: a**5 + 0.3*b - c
● You may ONLY use pre-existing blocks for arithmetic operations
● Your design must achieve a throughput of 1 output per cycle when there is no

backpressure
● Check your solution against a pre-existing testbench

challenge Downstream
ModuleREADY

VALID
Upstream
Module READY

VALID

Arithmetic Modules

Not allowed

● You may ONLY use pre-existing blocks for arithmetic operations

Instantiation of f_add

Valid/Ready from AXI-Stream

https://docs.amd.com/r/en-US/pg256-sdfec-integrated-block/AXI4-Stream-Interface

Throughput 1 Output per Cycle and No Empty Cycle Gaps

Empty Cycle Gap (bubble) from simulation.log

No Bubble

Getting Started

● Break the problem down as much as you can

● You can ask ChatGPT how to implement commonly seen modules (ie. FIFO)

● Treat it as co-pilot: double check the generated code to verify that it makes
sense

Solution

Approaching the Challenge

1. Submodule latencies

2. Calculate the formula

3. Add flow control

Finding the Latencies of Submodules

● Use what’s provided!

testbench.sv fpu_testbench.sv

Checks a**5 + 0.3*b - c Modify to check:
a*b
a+b
a-b

tesbench.sv fpu_tb.sv

I/O are different!

Output of simulation

3 cycles to produce output after the argument is accepted

f_mult - 3 cycle latency

f_sub - 3 cycle latency

f_add - 4 cycle latency

Designing a Suitable Architecture a**5 + 0.3*b - c

Cycle #

f_mult f_mult
a a**5

f_mult
3 6 90

ring_buf
(depth=6)

60

f_mult
0.3

b

c

f_sub
0.3*b - c3 6

ring_buf
(depth=3)

ring_buf
(depth=3)

9

Designing a Suitable Architecture a**5 + 0.3*b - c

f_mult f_mult
a

f_mult
3 6 9

Cycle #

0

ring_buf
(depth=6)

60

f_mult
0.3

b

c

f_sub

3 6

ring_buf
(depth=3)

ring_buf
(depth=3)

9

f_add
a**5 + 0.3*b - c

13

Adding Flow Control

a**5 + 0.3*b - c
fixed latency = 13

pipelined
1 cycle latency

