Synchronous FIFO Demonstration

initial				FIFO is empty
		FIFO		
	write pointer = 0		read pointer = 0	

push:	increment the wr	ite pointer		
		FIFO		
	write pointer = 1			
		data0	read pointer = 0	

pop:	increment the rea	increment the read pointer		FIFO is empty
		FIFO		
	write pointer = 1		read pointer = 1	
		data0		

push:	increment the wr	ite pointer		
		FIFO		
	write pointer = 2			
		data1	read pointer = 1	
		data0		

push:	increment the wr	ite pointer		
		FIFO		
	write pointer = 3			
		data2		
		data1	read pointer = 1	
		data0		

push:	increment the write pointer			
		FIFO		
	write pointer = 4			
		data3		
		data2		
		data1	read pointer = 1	
		data0		

push:	increment the wri	te pointer	
		FIFO	
	write pointer = 5		
		data4	
		data3	
		data2	
		data1	read pointer = 1
		data0	

push:	increment the wri	ite pointer	
		FIFO	
	write pointer = 6		
		data5	
		data4	
		data3	
		data2	
		data1	read pointer = 1
		data0	

push:	increment the wri	te pointer	
		FIFO	
	write pointer = 7		
		data6	
		data5	
		data4	
		data3	
		data2	
		data1	read pointer = 1
		data0	

push:	increment the write	increment the write pointer		
		FIFO		
		data7		
		data6		
		data5		
		data4		
		data3		
		data2		
		data1	read pointer = 1	
	write pointer = 0	data0		

push:	increment the write	increment the write pointer		FIFO is full
		FIFO		
		data7		
		data6		
		data5		
		data4		
		data3		
		data2		
	write pointer = 1	data1	read pointer = 1	
		data0		

pop:	increment the rea	increment the read pointer		
		FIFO		
		data7		
		data6		
		data5		
		data4		
		data3		
		data2	read pointer = 2	
	write pointer = 1	data1		
		data0		

pop:	increment the rea	ad pointer		
		FIFO		
		data7		
		data6		
		data5		
		data4		
		data3	read pointer = 3	
		data2		
	write pointer = 1	data1		
		data0		

pop:	increment the rea	increment the read pointer		
		FIFO		
		data7		
		data6		
		data5		
		data4	read pointer = 4	
		data3		
		data2		
	write pointer = 1	data1		
		data0		

pop:	increment the rea	increment the read pointer		
		FIFO		
		data7		
		data6		
		data5	read pointer = 5	
		data4		
		data3		
		data2		
	write pointer = 1	data1		
		data0		

pop:	increment the rea	nd pointer	
		FIFO	
		data7	
		data6	read pointer = 6
		data5	
		data4	
		data3	
		data2	
	write pointer = 1	data1	
		data0	

pop:	increment the read	d pointer	
		FIFO	
		data7	read pointer = 7
		data6	
		data5	
		data4	
		data3	
		data2	
	write pointer = 1	data1	
		data0	

pop:	increment the rea	d pointer		
		FIFO		
		data7		
		data6		
		data5		
		data4		
		data3		
		data2		
	write pointer = 1	data1		
		data0	read pointer = 0	

pop:	increment the read pointer			FIFO is empty
		FIFO		
		data7		
		data6		
		data5		
		data4		
		data3		
		data2		
	write pointer = 1	data1	read pointer = 1	
		data0		

push:	increment the read	pointer	
		FIFO	
		data7	
		data6	
		data5	
		data4	
		data3	
	write pointer = 2	data2	
		data1	read pointer = 1
		data0	

push AND pop:	increment both p	ointers		
		FIFO		
		data7		
		data6		
		data5		
		data4		
	write pointer = 3	data3		
		data2	read pointer = 2	
		data1		
		data0		

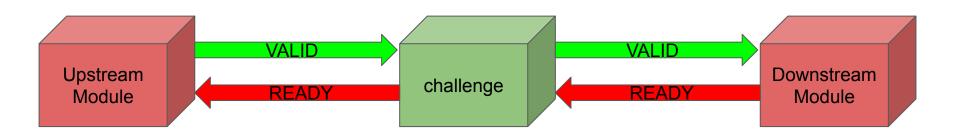
Full or Empty?

	FIFO			FIFO	
	data7			data7	
	data6			data6	
	data5			data5	
	data4			data4	
	data3			data3	
	data2			data2	
write pointer = 1	data1	read pointer = 1	write pointer = 1	data1	read pointer = 1
	data0			data0	

Solution: use an extra bit to which cycle the pointer is on

		1			
write cycle = 1	FIFO	read cycle = 0	write cycle = 0	FIFO	read cycle = 0
	data7			data7	
	data6			data6	
	data5			data5	
	data4			data4	
	data3			data3	
	data2			data2	
write pointer = 1	data1	read pointer = 1	write pointer = 1	data1	read pointer = 1
	data0			data0	
				·	

FULL when write_cycle != read_cycle

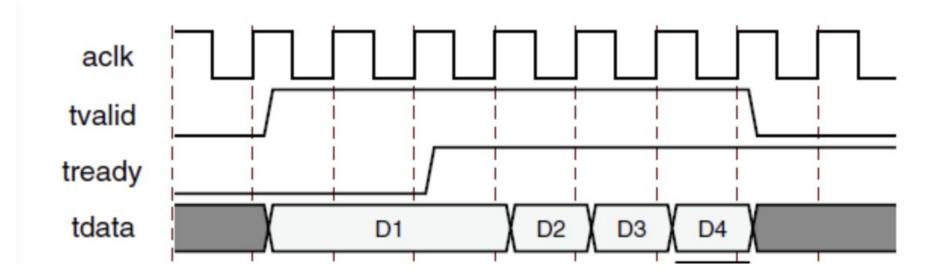

EMPTY when write_cycle == read_cycle

SystemVerilog Microarchitecture Challenge

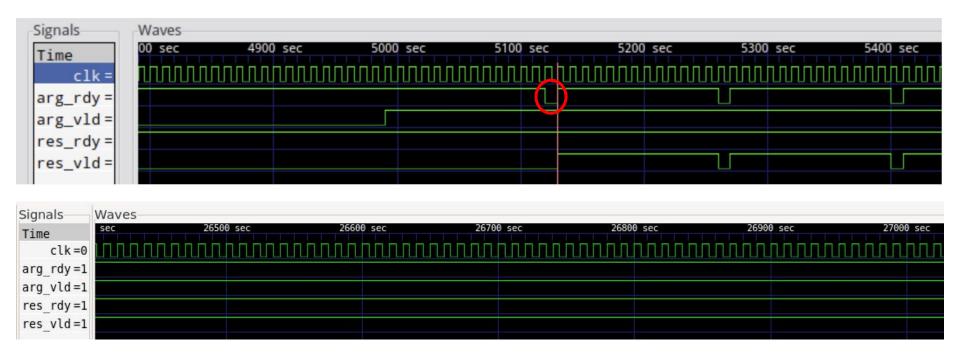
10/26/2025

The Challenge

- Write a pipelined block that computes: a**5 + 0.3*b c
- You may ONLY use pre-existing blocks for arithmetic operations
- Your design must achieve a throughput of 1 output per cycle when there is no backpressure
- Check your solution against a pre-existing testbench


Arithmetic Modules

You may ONLY use pre-existing blocks for arithmetic operations


```
assign res = a + b;
                            Not allowed
module f_add (
    input
                       clk,
    input
                       rst.
   input
          [FLEN - 1:0] a, b,
   input
                       up_valid,
   output [FLEN - 1:0] res,
   output
                       down_valid,
   output
                       busy,
   output
                       error
```

Instantiation of f add

Valid/Ready from AXI-Stream

Throughput 1 Output per Cycle and No Empty Cycle Gaps

Empty Cycle Gap (bubble) from simulation.log

```
******* Constraint random values back-to-back
testbench.sv time
                   26200 cycle 2619
                                         arg a:24508.6 b:10827.4 c:758.144
                   26210 cycle 2620
                                         arg a:8378.34 b:22603 c:33365.4
testbench.sv time
testbench.sv time
                   26220 cycle 2621
                                         arg a:8516.09 b:1546.2 c:21634.7
testbench.sv time
                   26230 cycle 2622
                                         arg a:22622.9 b:31396.9 c:26600.9
testbench.sv time
                   26240 cycle 2623
                                         arg a:41411.1 b:33249 c:42445
testbench.sv time
                   26250 cycle 2624
                                         arg a:16645.6 b:16603.9 c:14273.6
testbench.sv time
                   26260 cycle 2625
                                         ara a:40716.2 b:10036.5 c:1543.27
testbench.sv time
                   26270 cycle 2626
                                         arg a:33541.9 b:41807 c:17358.3
testbench.sv time
                   26280 cycle 2627
                                         arg a:19461.9 b:16574.3 c:29250.2
testbench.sv time
                   26290 cycle 2628
                                         arg a:15863.7 b:3803.28 c:8498.15
                   26300 cycle 2629
testbench.sv time
                                         arg a:8377.72 b:22389.4 c:10776.2
                   26310 cycle 2630
testbench.sv time
                                         arg a:24224.8 b:35814.3 c:13220.4
testbench.sv time
                   26320 cycle 2631
                                         ara a:12604 b:1596.27 c:1129.98
testbench.sv time
                   26330 cycle 2632
                                         arg a:6988.65 b:30471.5 c:17892.7 NOT READY arg_rdy:0
testbench.sv time
                   26340 cycle 2633
                                         arg a:6988.65 b:30471.5 c:17892.7
                                                                              res:8.84292e+21
```

No Bubble

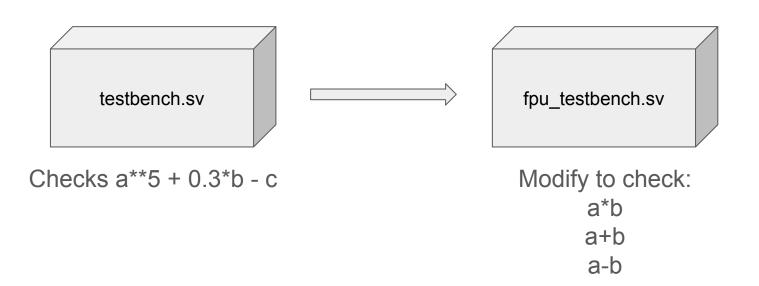
```
Constraint random values back-to-back
                   26200 cycle 2619
testbench.sv time
                                          ara a:24508.6 b:10827.4 c:758.144
testbench.sv time
                    26210 cycle 2620
                                          ara a:8378.34 b:22603 c:33365.4
testbench.sv time
                   26220 cycle 2621
                                          arg a:8516.09 b:1546.2 c:21634.7
testbench.sv time
                   26230 cycle 2622
                                          arg a:22622.9 b:31396.9 c:26600.9
testbench.sv time
                   26240 cycle 2623
                                          ara a:41411.1 b:33249 c:42445
testbench.sv time
                    26250 cycle 2624
                                          arg a:16645.6 b:16603.9 c:14273.6
testbench.sv time
                    26260 cycle 2625
                                          arg a:40716.2 b:10036.5 c:1543.27
testbench.sv time
                    26270 cycle 2626
                                          arg a:33541.9 b:41807 c:17358.3
                    26280 cycle 2627
testbench.sv time
                                          arg a:19461.9 b:16574.3 c:29250.2
testbench.sv time
                    26290 cycle 2628
                                          arg a:15863.7 b:3803.28 c:8498.15
                    26300 cycle
testbench.sv time
                                2629
                                          arg a:8377.72 b:22389.4 c:10776.2
testbench.sv time
                    26310 cycle 2630
                                          arg a:24224.8 b:35814.3 c:13220.4
testbench.sv time
                    26320 cycle 2631
                                          arg a:12604 b:1596.27 c:1129.98
testbench.sv time
                    26330 cycle 2632
                                          arg a:6988.65 b:30471.5 c:17892.7
                    26340 cycle
testbench.sv time
                                2633
                                          arg a:183.035 b:14652.7 c:23991.4
                                                                                res:8.84292e+21
```

Getting Started

Break the problem down as much as you can

You can ask ChatGPT how to implement commonly seen modules (ie. FIFO)

 Treat it as co-pilot: double check the generated code to verify that it makes sense


Solution

Approaching the Challenge

- 1. Submodule latencies
- 2. Calculate the formula
- 3. Add flow control

Finding the Latencies of Submodules

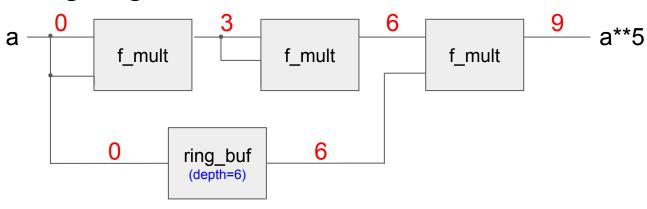
Use what's provided!

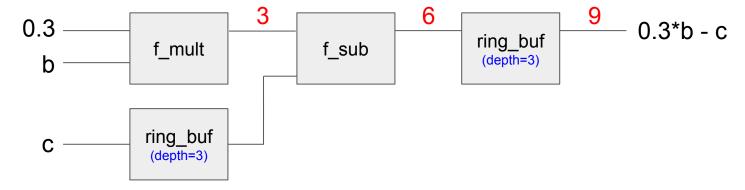
tesbench.sv fpu_tb.sv

```
dule testbench
                            clk;
                            rst:
                            arg vld
                            arg_rdy;
  logic [FLEN - 1:0] a;
logic [FLEN - 1:0] b;
logic [FLEN - 1:0] c;
                            res vld;
                            res_rdy;
  wire [FLEN - 1:0] res;
  localparam [FLEN - 1:0] inf = 64'h7FF0_0000_0000_0000
                                 neg_inf = 64'hFFF0_0000_0000_00
zero = 64'h0000_0000_0000_00
  challenge dut (.*);
```

```
dule fpu_tb
      clk;
      rst;
                                  I/O are different!
      up_valid;
      down_valid, busy, error;
      arg_rdy = 1;
localparam [FLEN - 1:0] inf
                     neg_inf = 64'hFFF0_0000_0000
                     zero
                     nan
f mult dut (.*);
```

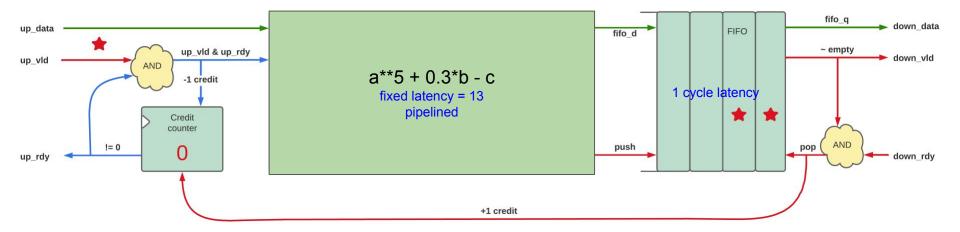
Output of simulation




3 cycles to produce output after the argument is accepted

```
f_mult - 3 cycle latencyf_sub - 3 cycle latencyf add - 4 cycle latency
```

Designing a Suitable Architecture


 $a^{**}5 + 0.3^*b - c$

$a^{**}5 + 0.3^*b - c$ Designing a Suitable Architecture 6 a f mult f mult f mult 0 6 ring buf $a^{**}5 + 0.3^{*}b - c$ (depth=6) f add 13 3 6 9 0.3 ring_buf f_mult f_sub (depth=3) b ring_buf (depth=3)

Adding Flow Control

