
Verilator Basic Usage Guide

Author: Ryan Cramer

1. What is Verilator?

Verilator converts Verilog and SystemVerilog HDL designs into C++ or SystemC, which is then

compiled and executed. Verilator is more of a compiler than a simulator.

2. Typical Usage:

Verilator can be used in 5 different ways:

1. Compilation Modes

1. --binary option, which Verilator makes your design executable by generating C++ and

compiling it

2. -cc or -sc options, which Verilator will translate the design into C++ (cc) or SystemC (sc)

3. --lint-only, which Verilator will lint the design to check for warnings (no output files)

2. Utility Modes

4. --json-only, which Verilator creates a JSON output to feed to other design tools

5. -E, which Verilator preprocesses the code according to IEEE preprocessing rules and write

the output to stdout. This is useful to feed other tools and debug `define statements.

3. Generating Models

--binary just makes a C++ model and compiles it

--cc = C++ output mode, Verilator generates a simple C++ class for the model

▪ User must write C++ wrapper and main loop for simulation

▪ Call eval() to evaluate the model

▪ Call final() when simulation is complete

--sc will turn SystemVerilog into SystemC

▪ User must write SystemC wrapper and main loop for simulation

--top-module determines the top module (otherwise MULTITOP errors can occur)

Verilator writes C++/SystemC code to output files into the --Mdir option-specified directory, or defaults

to /obj_dir/. The prefix is set with --prefix, which defaults to the name of the top module

If --binary or --main is used, Verilator creates a C++ top wrapper to read CLI arguments, creates the

model, then executes the model.

If --binary or --exe is used, Verilator creates makefiles to generate a simulation executable, otherwise, it

creates makefiles to generate an archive (.a) containing the objects

If --binary or --build is used, it calls GNU Make or CMake to build the model

(once a model is built, the next step is to run it)

Please see Cycle-Driven vs Event-Driven Simulation

Mode How it Works Pros Cons

CYCLE-Driven Evaluate whole design

per clock tick in C++

Extremely fast,

deterministic

Ignores #delays, not

valid for gate-level

timing.

EVENT-Driven Scheduler processes

events, delta cycles

Supports precise

timing, 2-state

simulation

Slower, heavier

Made for Verilog TBs

You can create a wrapper that will call the Verilated model of your design, and essentially act as a

testbench.

Example: Using a 32-bit comparator, here is an example of a combinational testbench wrapper:

SystemVerilog to Executable (no-wave trace):

1. Create SystemVerilog File <design>.sv

module demo;

 initial begin $display("Hello World"); $finish; end

endmodule

2. Run Verilator on the example (this creates obj_dir)
ubuntu@asic$ verilator --binary -j 0 -Wall <design>.sv

--binary Verilator will translate the design into an

executable

-j 0 simulate using as many threads as possible

-Wall stronger lint warnings

demo.sv our example SystemVerilog file

3. Run your Verilated model (your model inside obj_dir - has prefix V)

ubuntu@asic$./obj_dir/V<design>

SystemVerilog to Waveform

Note: Please be sure to use $dumpfile() and $dumpvars() in your testbench to generate a .vcd

verilator --timing --trace --binary <testname>.sv -I"<rtl folder>"

./obj_dir/V<testname>

Use Surfer or GTKWave to view the .vcd file

