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Background
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What is Formal Verification?

The two common approaches to hardware verification are functional and formal
verification:

Functional Verification

Defn: Test an implementation behaves the same as its specification by sending many random
inputs and comparing the results to a reference. The more inputs tested, the higher the
probability that the two are equal.

Formal Verification

Defn: Prove an implementation always behaves in accordance with its specification using
some form of mathematical reasoning, e.g. theorem proving, model checking, etc.

Generally speaking, functional verification is simpler to implement and run, but provides a
much weaker guarantee that the system behaves correctly.
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What is Formal Verification?

Consider a simple example: Show that (x + 2)2 ≡ x2 + 4x + 4

Functional Testing

x (x + 2)2 x2 + 4x + 4 Match?

1 9 9 ✓
2 16 16 ✓
5 49 49 ✓
10 144 144 ✓
... ... ... ?

Formal Proof

Proof.

(x + 2)2 ≡ x2 + 4x + 4

(x + 2) ∗ (x + 2) ≡ x2 + 4x + 4

x2 + 2x + 2x + 4 ≡ x2 + 4x + 4

x2 + 4x + 4 ≡ x2 + 4x + 4

On the left, each input test increases the likelihood that the two are the same, but we can
not be certain unless we try every possible input.

The proof on the right requires applying mathematical reasoning to show the two are the
same, but after doing the work, we can be certain they are the same.
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What is Formal Verification?

Formal verification encompasses a broad range of topics.

Varities of Formal

Theorem Proving: an engineer proves some property holds for a device manually

Model Checking: given a device and a set of assertions, have a tool demonstrate that the
assertions always hold.

Equivalence Checking: Prove that two implementations have the same logical behavior

Symbolic Trajectory Evaluation: Use symbolic simulation to determine how a system
behaves over time.

... Among other things

Each area has a variety of useful applications, but today we will focus on the most
popular branch for ASIC verification model checking.
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Model Checking
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The Model Checking Problem

Model Checking

Input: An implementation of a device M, set of all states S , and set of properties F .
Goal: Show M satisfies all formulas in F for all reachable states. ∀s ∈ S ,∀f ∈ F : M, s ⊨ f

Figure: Model Checking Flow
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What Do We Want To Prove?

What should the properties in F show?

We want to prove that the system never breaks, while also taking action.

This can be described in terms of two fundamental properties [1]:

Safety Properties

Defn: Some bad behavior P never happens: □¬P
Example: Show that when a CPU interrupts, it will always block any updates to registers and
memory from the interrupted instruction.

Liveness Properties

Defn: A good behavior P eventually happens [♢P], or always eventually happens [□♢P]
Example: Show that a CPU will always eventually execute an instruction; it will never halt
entirely.
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What Do We Want To Prove?

Notice that we must show both hold for our
system to be correct:

A device that does nothing will always
pass safety checks.

A device that always does something, even
if it is wrong, will pass liveness checks.

Figure: An always red
traffic light is safe, but
deadlocked.

Figure: An always green
traffic light is live, but
unsafe.
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How Can We Prove It?

We now have a structured way to check if an implementation is correct.

Having a way to express this is nice, but how do we solve it?

Ideally, we want some way to determine a solution automatically.
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Introducing Satisfiability

Conjunctive Normal Form (CNF)

A Boolean formula where variables are in groups (clauses) joined by OR. The clauses are then
joined by AND. e.g., (x1 ∨ ¬x2) ∧ (x2 ∨ x3)

Satisfiability (SAT)

Input: A CNF formula.
Goal: Determine if there is a true/false assignment for the variables that makes the entire
formula evaluate to true.

If such an assignment exists, the formula is Satisfiable (SAT).

If no such assignment exists, it is Unsatisfiable (UNSAT).

We can rephrase an instance of model checking in terms of Satisfiability, use the existing
tools to solve the SAT problem, and construct a solution to our original input.
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The Reduction: Model Checking ≤p SAT [4]

f
Algorithm for

SAT
h

Algorithm for Model Checking

A model M,
number of cycles N,
and properties F

A sequence of
k < N states S ,
where M, sk ̸⊨ F

A CNF Formula
ρ = (X ,C )

Satisfying Assignment
A : X → {true, false}

Pass

f transforms the model checking problem into a SAT equation where a satisfying
assignment means there is a sequence of states where M breaks a property.

h takes the output and transforms it back into the sequence of states that we can debug.
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Bounded Model Checking

This approach to solving the model checking problem is called Bounded Model
Checking.

Bounded Model Checking (BMC)

Input: A model M, a set of properties F , and a number of steps N
Goal: Demonstrate that the model never violates the properties for N time steps.

With this approach, we can prove a system always behaves properly for the first N cycles.

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026 13 / 54



Why use SAT? (Isn’t it NP-Complete?)

SAT is provably NP-Complete. In the worst case, the time to solve it grows exponentially
(2N). A brute-force check of 100 variables is impossible.

Why Does it Work For Hardware?

Hardware problems are generally contain certain logical patterns; they are not entirely random.

Modern Solvers (CDCL): Tools like MiniSAT, Z3, and Boolector use intelligent
heuristics (Conflict-Driven Clause Learning) to ”learn” from mistakes and prune vast
sections of the search space.

Satisfiability Modulo Theories (SMT): Most modern tools go beyond SAT and
support SMT solving, allowing the tool to efficiently represent formulas with real
numbers, data structures, etc.

While the worst case is bad, verifying hardware logic rarely leads to this case. We can
routinely solve problems with millions of variables in seconds.
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SymbiYosys
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SymbiYosys

SymbiYosys [3] is an open source tool for
running bounded model checks on verilog
modules.

It uses Yosys to transform Verilog modules
and assertions into SMT-LIB files used by
SAT solvers.

For a BMC, it repeatedly sends larger and
larger instances of the problem until a
counterexample is found or the cycle limit
is reached.
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Getting Started with SBY

Running SymbiYosys checks requires a
.sby file that includes the path to all
Verilog files and the types of checks to
run.

When we want to run a check, we can
invoke the sby tool on this file.

# Run a certain task on the module

sby -f example.sby <task -name >

[tasks]

bmc # Run a bounded model check

prove # Prove module inductively

cover # Check cover properties

[options]

bmc: mode bmc

prove: mode prove

cover: mode cover

depth 20

expect pass

[engines]

smtbmc boolector

[script]

read -formal example.v

prep -top eaxmple

[files]

rtl/example.v
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BMC with SymbiYosys
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BMC with SymbiYosys

SymbiYosys adds assume and assert
functions to allow your module to interact
with the SAT solver

assert: Defines illegal states, if the solver
encounters an assert that is not true the
BMC fails and returns a counterexample

assume: Defines unreachable states,
these are states that may not necessarily
be illegal, but would never happen when
running the system.

Generally we assume the first cycle of a
check will be a reset, since we would never
run a device without resetting.

// Assume we start in the reset state

reg f_past_valid = 0;

always @(posedge i_clk)

f_past_valid <= 1;

always @(posedge i_clk)

if (! f_past_valid) assume (! i_rstn);

// Assert that invalid states are

impossible

always @(*) if (f_past_valid && i_rstn)

begin

assert(o_cyc || !o_stb);

end
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Visualizing BMC

Consider all possible states your design can be in.

Figures adapted from ZipCPU Verification Tutorial [2].

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026 20 / 54



Visualizing BMC

Assertions expand the set of illegal states.

Figures adapted from ZipCPU Verification Tutorial [2].
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Visualizing BMC

Assumptions restrict the number of states.

Figures adapted from ZipCPU Verification Tutorial [2].
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BMC Tips and Tricks
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Clocked Assertions

As is, we have only discussed assertions
that rely on the current state

To define assertions that rely on previous
states, SymbiYosys adds the $past
function

$past(x, N): return the value of this
expression from N cycles ago. N is 1 by
default. Past can only exist inside clocked
code blocks.

Always add a precondition to these
assertions that the simulation has run for
at least N cycles, otherwise $past returns
an undefined value. The solver will use
this to break your assertions.

// AXI data stability

always @(posedge i_clk) if (

f_past_valid

&& $past(!i_rst)
&& $past(o_imem_resp_vld)
&& $past(! i_imem_resp_rdy)

) begin

assert(o_imem_resp_vld);

assert($stable(o_imem_resp_data));
end

// Note: $stable is the same as:

// o_imem_resp_data == $past(
o_imem_resp_data )
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Arbitrary Values and Shadow Logic

A common method for verifying data
integrity is showing that some arbitrary
transaction enters and exits the DUT
without being corrupted

SymbiYosys offers the (* anyconst *) and
(* anyseq *) modifiers to drive these
checks.

Adding one of these modifiers to a
variable tells the solver it can select an
arbitrary constant or sequence of values to
assign to it.

With (* anyconst *), the solver can tag an
arbitrary input transaction and verify the
corresponding output matches.

// tells the solver to select an arbitrary

constant value

(* anyconst *) int f_watch_id;

// track arbitrary data as it passes

through the fifo

reg f_shadow_valid;

reg [XLEN -1:0] f_shadow_data;

always @(posedge i_clk) begin

if (! i_rstn) begin

f_shadow_valid <= 0;

f_shadow_data <= 0;

end else if (

f_writing

&& (write_count == f_watch_id)

) begin

f_shadow_valid <= 1;

f_shadow_data <= s_axis_tdata;

end

end
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BMC Limitations

An important caveat is that BMC only proves the system behaves properly for a finite
number of cycles. Ideally, we want to claim that these properties are never violated.

Luckily, we can solve this problem with induction.
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Unbounded Proofs with K-Induction
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K-Induction

For traditional induction, suppose we want to prove ∀n : P[n], n ∈ N
Base Case: Show P[0]

Inductive Step: Assuming P[n] is true, show P[n + 1]

K-Induction applies this same reasoning to model checking for unbounded proofs.

K-Induction

Base Case: Using a BMC, prove the model holds for N cycles.
Inductive Step: Assume you have a valid sequence of N states, show it holds for N + 1

For the inductive step, the solver treats the assertions as assumptions and constructs an
arbitrary sequence of states, before checking the next step is valid.

This can become complicated when you run into invalid states.
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Visualizing K-Induction

BMC starts at reset and checks some number of states. The inductive step finds an
arbitrary series of states that meet our assertions, and checks to see if the next step is
also valid.

Figures adapted from ZipCPU Verification Tutorial [2].
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Visualizing K-Induction

The solver could choose to start in an unreachable state. This would break induction.

Figures adapted from ZipCPU Verification Tutorial [2].
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K-Induction Best Practices

Even after you pass BMC, you may fail induction.

Add assumptions for inputs that should never happen.

Add stricter assertions to make unreachable states invalid. This may require exposing
some of the module’s internal signals to force inner registers to never start in an invalid
state.

Different solvers are better at different parts of induction, switching the solver may lead
to a pass.

If all else fails, the base case may be insufficient. Increase the number of cycles the BMC
runs.
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Reachability with Cover Properties

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026 32 / 54



Cover Properties

Another common question when verifying a design is determining whether a certain condition
is reachable.

Certain types of bugs or too many assumptions may cause the SAT solver to never visit
some states.

For instance, consider a simple FIFO:

How can we ensure that the FIFO can be completely emptied or filled?

SymbiYosys’ cover properties allow us to quickly verify behavior
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Adding Cover Properties

The cover function tells the solver to
search for a sequence of states that makes
the expression inside its parentheses true.

During a cover run, the solver returns
multiple VCDs that show the sequences of
states that cause each cover property to
be true. It will mark any covers that can
not be satisfied as failing.

These are effectively the reverse of
assertions. Rather than proving that bad
behavior never happens, these prove that
good behavior can happen at least once.

// Cover properties

always @(*) if (!i_rst) begin

cover(w_queue_is_empty);

cover(w_queue_is_full);

end
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Recap Quiz
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Safety and Liveness

What do safety properties prove?

Something bad never happens
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Safety and Liveness

What do safety properties prove?

Something bad never happens
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Safety and Liveness

What do liveness properties prove?

Something good eventually happens

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026 37 / 54



Safety and Liveness

What do liveness properties prove?

Something good eventually happens
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BMC vs. Induction

Which statement accurately describes the difference between Bounded
Model Checking (BMC) and Induction?

BMC is used for Liveness properties, while Induction is used
exclusively for Safety properties.

BMC proves the design is correct for all time by checking all
reachable states, while Induction checks only the first k cycles.

BMC checks that the property holds for k steps, while Induction
attempts to prove that if the property holds for k steps, it must hold
for step k+1.

BMC is slower but more thorough, while Induction is a quick
approximation.
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Assert, Assume, and Cover

Function that defines the set of illegal states. If the expression in
parentheses is false, the check fails.

Assert
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Assert, Assume, and Cover

Function that defines the set of illegal states. If the expression in
parentheses is false, the check fails.

Assert
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Assert, Assume, and Cover

Function that restricts what states the solver can choose. The solver may
never make the expression inside its parentheses false.

Assume
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Assert, Assume, and Cover

Function that restricts what states the solver can choose. The solver may
never make the expression inside its parentheses false.

Assume
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Assert, Assume, and Cover

Function that defines states that should be reachable by the system. If
the solver can find a sequence of states that makes the expression inside
its parentheses true, the check passes.

Cover
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Assert, Assume, and Cover

Function that defines states that should be reachable by the system. If
the solver can find a sequence of states that makes the expression inside
its parentheses true, the check passes.

Cover

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026 42 / 54



Clocked Assertions

Why is it necessary to use if (f past valid) (or a similar valid signal) when
using $past() in an assertion?

Because $past() is computationally expensive and should be used
sparingly.

To prevent the solver from checking the assertion in the very first
cycle, where ”past” is undefined.

Because $past() can only be used on valid AXI streams.

To ensure the clock is stable before checking data.
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Free Variables

In your formal testbench, you declare a configuration signal cfg thresh as
(* anyconst *). How will the SAT solver determine the value of this
signal during a proof?

It will assign a random valid value to cfg thresh at the start of the run.

It will iterate through every possible value of cfg thresh sequentially
(0, 1, 2...) until the proof finishes.

It will treat cfg thresh as a constant, but it will mathematically search
for and select the specific value (if one exists) that causes an
assertion to fail.

It will default the value to 0 to keep the initial state clean.
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Free Variables

In your formal testbench, you declare a configuration signal cfg thresh as
(* anyconst *). How will the SAT solver determine the value of this
signal during a proof?

It will assign a random valid value to cfg thresh at the start of the run.

It will iterate through every possible value of cfg thresh sequentially
(0, 1, 2...) until the proof finishes.

It will treat cfg thresh as a constant, but it will
mathematically search for and select the specific value (if one
exists) that causes an assertion to fail.

It will default the value to 0 to keep the initial state clean.
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Let’s Practice!
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Formally Verifying an AXI FIFO

For some hands-on practice, let’s try to
verify an AXI Stream FIFO formally.

https://github.com/rpeters54/

AXI-FIFO-Formal Includes a set of
bugged FIFOs and a formal verification
scaffold.

The CARP Docker container should come
with all the tools you need to run the lab.

I included a link to install the tools
natively if the docker does not work.

clk

o_rdy

i_vld

i_data

i_rdy

o_vld

o_data

Figure: AXI Write and Read Transaction
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Bug 1 - Overfill and Underfill

The first bugged FIFO acts as if it always has data, but is never full.

How can we prove that this behavior is incorrect?

clk

o_rdy

i_vld

i_data

i_rdy

o_vld

o_data

Figure: First Bugged FIFO
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Bug 2 - Corrupted Data

The second bugged seems to begin corrupting data after a few transactions.

How can we prove that this behavior is incorrect?

clk

o_rdy

i_vld

i_data

i_rdy

o_vld

o_data

Figure: Second Bugged FIFO
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Bug 3 - Dead FIFO

This FIFO does absolutely nothing.

How can we prove that this behavior is incorrect?

clk

o_rdy

i_vld

i_data

i_rdy

o_vld

o_data

Figure: Third Bugged FIFO
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Try Out Induction

After filling in the missing assertions, check your work against the key to make sure you
have everything.

Below the blanks are some strengthening assertions that make it possible for induction to
pass.

Try out the unbounded proof and verify it passes for the reference model.
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Thank You

Questions?
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