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Background
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What is Formal Verification?

@ The two common approaches to hardware verification are functional and formal
verification:

Functional Verification

Defn: Test an implementation behaves the same as its specification by sending many random
inputs and comparing the results to a reference. The more inputs tested, the higher the
probability that the two are equal.

Formal Verification
Defn: Prove an implementation always behaves in accordance with its specification using
some form of mathematical reasoning, e.g. theorem proving, model checking, etc.

@ Generally speaking, functional verification is simpler to implement and run, but provides a
much weaker guarantee that the system behaves correctly.
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What is Formal Verification?

o Consider a simple example: Show that (x +2)2 = x% + 4x + 4
Formal Proof

Functional Testing Proof.
x | (x+2)2 [ X2+ 4x+ 4 | Match? (x 122 = x2 4 dx + 4
1 9 9 v
2 16 16 v (x+2)x(x+2)=x>+4x+4
> 49 49 v X2 2x+2x+4=x%+4x+ 4
10| 144 144 v , )
? x“+4x+4=x"+4x+4
L]

@ On the left, each input test increases the likelihood that the two are the same, but we can
not be certain unless we try every possible input.

@ The proof on the right requires applying mathematical reasoning to show the two are the
same, but after doing the work, we can be certain they are the same.
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What is Formal Verification?

@ Formal verification encompasses a broad range of topics.

Varities of Formal
@ Theorem Proving: an engineer proves some property holds for a device manually

@ Model Checking: given a device and a set of assertions, have a tool demonstrate that the
assertions always hold.

Equivalence Checking: Prove that two implementations have the same logical behavior

Symbolic Trajectory Evaluation: Use symbolic simulation to determine how a system
behaves over time.

@ ... Among other things

Each area has a variety of useful applications, but today we will focus on the most
popular branch for ASIC verification model checking.
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Model Checking
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The Model Checking Problem

Model Checking

Input: An implementation of a device M, set of all states S, and set of properties F.
Goal: Show M satisfies all formulas in F for all reachable states. Vs € S,Vf € F: M,sE f

RTL Pass
Implementation
J
A
e Model

Specification Checker

Behavioral Fail +

Assertions Counter

example

Figure: Model Checking Flow
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What Do We Want To Prove?

What should the properties in F show?
@ We want to prove that the system never breaks, while also taking action.

This can be described in terms of two fundamental properties [1]:

Safety Properties

Defn: Some bad behavior P never happens: [J-P
Example: Show that when a CPU interrupts, it will always block any updates to registers and
memory from the interrupted instruction.

Liveness Properties

Defn: A good behavior P eventually happens [OP], or always eventually happens [JOP]
Example: Show that a CPU will always eventually execute an instruction; it will never halt
entirely.
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What Do We Want To Prove?

Notice that we must show both hold for our
system to be correct:

@ A device that does nothing will always
pass safety checks.

@ A device that always does something, even
if it is wrong, will pass liveness checks.

Figu_re:.An a.Iways red Figure: An always green
traffic light is safe, but  traffic light is live, but
deadlocked. unsafe.
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How Can We Prove It

We now have a structured way to check if an implementation is correct.
@ Having a way to express this is nice, but how do we solve it?

o ldeally, we want some way to determine a solution automatically.
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Introducing Satisfiability

Conjunctive Normal Form (CNF)

A Boolean formula where variables are in groups (clauses) joined by OR. The clauses are then
joined by AND. e.g., (x1 V =x2) A (x2 V x3)

Satisfiability (SAT)
Input: A CNF formula.

Goal: Determine if there is a true/false assignment for the variables that makes the entire
formula evaluate to true.

@ If such an assignment exists, the formula is Satisfiable (SAT).
@ If no such assignment exists, it is Unsatisfiable (UNSAT).

@ We can rephrase an instance of model checking in terms of Satisfiability, use the existing
tools to solve the SAT problem, and construct a solution to our original input.
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The Reduction: Model Checking <, SAT [4]

Algorithm for Model Checking

A CNF Formula Satisfying Assignment
p=(X,C) A:X — {true, false}

A model M, Algorithm f A sequence of
number of cycles N, ——»{ f '—>[ gogtATm or_» k < N states S,
and properties F where M, s,  F

| » Pass

>

o f transforms the model checking problem into a SAT equation where a satisfying
assignment means there is a sequence of states where M breaks a property.

@ h takes the output and transforms it back into the sequence of states that we can debug.
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Bounded Model Checking

@ This approach to solving the model checking problem is called Bounded Model
Checking.

Bounded Model Checking (BMC)

Input: A model M, a set of properties F, and a number of steps N
Goal: Demonstrate that the model never violates the properties for N time steps.

@ With this approach, we can prove a system always behaves properly for the first N cycles.
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Why use SAT? (Isn’t it NP-Complete?)

SAT is provably NP-Complete. In the worst case, the time to solve it grows exponentially
(2N). A brute-force check of 100 variables is impossible.

Why Does it Work For Hardware? J

Hardware problems are generally contain certain logical patterns; they are not entirely random.

e Modern Solvers (CDCL): Tools like MiniSAT, Z3, and Boolector use intelligent
heuristics (Conflict-Driven Clause Learning) to "learn” from mistakes and prune vast
sections of the search space.

e Satisfiability Modulo Theories (SMT): Most modern tools go beyond SAT and
support SMT solving, allowing the tool to efficiently represent formulas with real
numbers, data structures, etc.

@ While the worst case is bad, verifying hardware logic rarely leads to this case. We can
routinely solve problems with millions of variables in seconds.
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SymbiYosys
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SymbiYosys

e SymbiYosys [3] is an open source tool for
running bounded model checks on verilog /
modules. WIS

with Checks

Yosys

SMTLB
File

Verlog SMTLIB
‘ Gut> ‘ Backend

@ It uses Yosys to transform Verilog modules
and assertions into SMT-LIB files used by

SAT solvers. 1N ’JJT

SymbiYosys \

@ For a BMC, it repeatedly sends larger and = = D
larger instances of the problem until a N k /
counterexample is found or the cycle limit
is reached.
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Getting Started with SBY

@ Running SymbiYosys checks requires a
.sby file that includes the path to all
Verilog files and the types of checks to
run.

@ When we want to run a check, we can
invoke the sby tool on this file.

# Rum a certain task on the module
sby -f example.sby <task-name>

[tasks]

bmc # Runm a bounded model check
prove # Prove module inductively
cover # Check cowver properties

[options]

bmc: mode bmc
prove: mode prove
cover: mode cover
depth 20

expect pass

[engines]
smtbmc boolector

[script]
read -formal example.v
prep -top eaxmple

[files]
rtl/example.v

Riley Peters (Cal Poly: San Luis Obispo)

Introduction to ASIC Formal Verification

January 29, 2026



BMC with SymbiYosys
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BMC with SymbiYosys

@ SymbiYosys adds assume and assert
functions to allow your module to interact
with the SAT solver

o assert: Defines illegal states, if the solver
encounters an assert that is not true the
BMC fails and returns a counterexample

@ assume: Defines unreachable states,
these are states that may not necessarily
be illegal, but would never happen when
running the system.

@ Generally we assume the first cycle of a
check will be a reset, since we would never
run a device without resetting.
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// Assume we start in the reset state
reg f_past_valid = O0;
always @(posedge i_clk)
f_past_valid <= 1;
always @(posedge i_clk)
if (!'f_past_valid) assume (!i_rstmn);

// Assert that
impossible
always @(x) if (f_past_valid && i_rstn)
begin
assert (o_cyc ||

invalid states are

lo_stb);
end
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Visualizing BMC

@ Consider all possible states your design can be in.

All potential logic combinations (states)

Initial
State

Figures adapted from ZipCPU Verification Tutorial [2].
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Visualizing BMC

@ Assertions expand the set of illegal states.

All potential logic combinations (states)

Valid
States

Figures adapted from ZipCPU Verification Tutorial [2].
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Visualizing BMC

@ Assumptions restrict the number of states.

All potential logic combinations (states)

ASSUME

Figures adapted from ZipCPU Verification Tutorial [2].
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BMC Tips and Tricks
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Clocked Assertions

As is, we have only discussed assertions
that rely on the current state

To define assertions that rely on previous
states, SymbiYosys adds the $past
function

$past(x, N): return the value of this
expression from N cycles ago. N is 1 by
default. Past can only exist inside clocked
code blocks.

Always add a precondition to these
assertions that the simulation has run for
at least N cycles, otherwise $past returns
an undefined value. The solver will use
this to break your assertions.

// AXI
always

&&
&&
&&

) begin

data stability
@(posedge i_clk) if (
f_past_valid

$past ('i_rst)

$past (o_imem_resp_vld)
$past (!i_imem_resp_rdy)

assert (o_imem_resp_vld);
assert ($stable(o_imem_resp_data));

end

// Note:

// o_imem_resp_data

$stable is the same as:

$past (

o_timem_resp_data)

Riley Peters (Cal Poly: San Luis Obispo)

Introduction to ASIC Formal Verification

January 29, 2026



Arbitrary Values and Shadow Logic

@ A common method for verifying data
integrity is showing that some arbitrary
transaction enters and exits the DUT
without being corrupted

@ SymbiYosys offers the (* anyconst *) and
(* anyseq *) modifiers to drive these
checks.

@ Adding one of these modifiers to a
variable tells the solver it can select an
arbitrary constant or sequence of values to
assign to it.

e With (* anyconst *), the solver can tag an
arbitrary input transaction and verify the
corresponding output matches.
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// tells
constant wvalue
(* anyconst *) int f_watch_id;

the solver to select

// track arbitrary data as
through the fifo

f_shadow_valid;

f_shadow_data;

7t passes

reg
reg [XLEN-1:0]

always @(posedge i_clk) begin

if (!'i_rstn) begin
f_shadow_valid <= 0;
f_shadow_data <= 0;

end else if (
f_writing
&& (write_count

) begin
f_shadow_valid <= 1;
f_shadow_data <= s_axis_tdata;

f_watch_id)

end
end

January 29, 2026
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BMC Limitations

@ An important caveat is that BMC only proves the system behaves properly for a finite
number of cycles. Ideally, we want to claim that these properties are never violated.

@ Luckily, we can solve this problem with induction.
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Unbounded Proofs with K-Induction
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K-Induction

e For traditional induction, suppose we want to prove Vn : P[n],n € N
e Base Case: Show P[0]
e Inductive Step: Assuming P[n] is true, show P[n + 1]

@ K-Induction applies this same reasoning to model checking for unbounded proofs.

K-Induction

Base Case: Using a BMC, prove the model holds for N cycles.
Inductive Step: Assume you have a valid sequence of N states, show it holds for N + 1

@ For the inductive step, the solver treats the assertions as assumptions and constructs an
arbitrary sequence of states, before checking the next step is valid.

@ This can become complicated when you run into invalid states.
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Visualizing K-Induction

@ BMC starts at reset and checks some number of states. The inductive step finds an
arbitrary series of states that meet our assertions, and checks to see if the next step is
also valid.

BMC, the base case

Bounded Model Checking (BMC) .
Checks assertions on every step ]

n=0 Can fail anywhere along this line

Induction step

k-Induction J
[ Assertions treated as assumptions | |

Fails here,
\K—/at step N+1
if at all

N steps

Figures adapted from ZipCPU Verification Tutorial [2].
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Visualizing K-Induction

@ The solver could choose to start in an unreachable state. This would break induction.

All potential logic combinations (states)

A not-illegal
Valid
States

Figures adapted from ZipCPU Verification Tutorial [2].

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026



K-Induction Best Practices

Even after you pass BMC, you may fail induction.
@ Add assumptions for inputs that should never happen.

@ Add stricter assertions to make unreachable states invalid. This may require exposing

some of the module’s internal signals to force inner registers to never start in an invalid
state.

@ Different solvers are better at different parts of induction, switching the solver may lead
to a pass.

o If all else fails, the base case may be insufficient. Increase the number of cycles the BMC
runs.
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Reachability with Cover Properties
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Cover Properties

Another common question when verifying a design is determining whether a certain condition
is reachable.

@ Certain types of bugs or too many assumptions may cause the SAT solver to never visit
some states.

For instance, consider a simple FIFO:

@ How can we ensure that the FIFO can be completely emptied or filled?

SymbiYosys' cover properties allow us to quickly verify behavior
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Adding Cover Properties

@ The cover function tells the solver to
search for a sequence of states that makes
the expression inside its parentheses true.

@ During a cover run, the solver returns L .
. over p'r“oper €8s
multiple VCDs that show the sequences of .1uays e(+) if (1i_rst) begin
states that cause each cover property to cover (w_queue_is_empty);
. cover (w_queue_is_full);
be true. It will mark any covers that can  _ .
not be satisfied as failing.

@ These are effectively the reverse of
assertions. Rather than proving that bad
behavior never happens, these prove that
good behavior can happen at least once.
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Recap Quiz
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Safety and Liveness

What do safety properties prove?
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Safety and Liveness

What do safety properties prove?

Something bad never happens
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Safety and Liveness

What do liveness properties prove?
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Safety and Liveness

What do liveness properties prove?

Something good eventually happens
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BMC vs. Induction

Which statement accurately describes the difference between Bounded
Model Checking (BMC) and Induction?

o BMC is used for Liveness properties, while Induction is used
exclusively for Safety properties.

o BMC proves the design is correct for all time by checking all
reachable states, while Induction checks only the first k cycles.

o BMC checks that the property holds for k steps, while Induction
attempts to prove that if the property holds for k steps, it must hold
for step k+1.

o BMC is slower but more thorough, while Induction is a quick
approximation.
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BMC vs. Induction

Which statement accurately describes the difference between Bounded
Model Checking (BMC) and Induction?

o BMC is used for Liveness properties, while Induction is used
exclusively for Safety properties.

o BMC proves the design is correct for all time by checking all
reachable states, while Induction checks only the first k cycles.

o BMC checks that the property holds for k steps, while
Induction attempts to prove that if the property holds for k
steps, it must hold for step k+1.

o BMC is slower but more thorough, while Induction is a quick
approximation.
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Assert, Assume, and Cover

Function that defines the set of illegal states. If the expression in
parentheses is false, the check fails.
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Assert, Assume, and Cover

Function that defines the set of illegal states. If the expression in
parentheses is false, the check fails.

Assert
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Assert, Assume, and Cover

Function that restricts what states the solver can choose. The solver may
never make the expression inside its parentheses false.
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Assert, Assume, and Cover

Function that restricts what states the solver can choose. The solver may
never make the expression inside its parentheses false.

Assume

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026



Assert, Assume, and Cover

Function that defines states that should be reachable by the system. If
the solver can find a sequence of states that makes the expression inside
its parentheses true, the check passes.
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Assert, Assume, and Cover

Function that defines states that should be reachable by the system. If
the solver can find a sequence of states that makes the expression inside
its parentheses true, the check passes.

Cover
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Clocked Assertions

Why is it necessary to use if (f_past_valid) (or a similar valid signal) when
using $past() in an assertion?

o Because $past() is computationally expensive and should be used
sparingly.

o To prevent the solver from checking the assertion in the very first
cycle, where "past” is undefined.

o Because $past() can only be used on valid AXI streams.

o To ensure the clock is stable before checking data.
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Clocked Assertions

Why is it necessary to use if (f_past_valid) (or a similar valid signal) when
using $past() in an assertion?

o Because $past() is computationally expensive and should be used
sparingly.

o To prevent the solver from checking the assertion in the very
first cycle, where " past” is undefined.

o Because $past() can only be used on valid AXI streams.

o To ensure the clock is stable before checking data.
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Free Variables

In your formal testbench, you declare a configuration signal cfg_thresh as
(* anyconst *). How will the SAT solver determine the value of this

signal during a proof?

o It will assign a random valid value to cfg_thresh at the start of the run.

o It will iterate through every possible value of cfg_thresh sequentially
(0, 1, 2...) until the proof finishes.

o It will treat cfg_thresh as a constant, but it will mathematically search
for and select the specific value (if one exists) that causes an
assertion to fail.

o It will default the value to 0 to keep the initial state clean.

Riley Peters (Cal Poly: San Luis Obispo) Introduction to ASIC Formal Verification January 29, 2026



Free Variables

In your formal testbench, you declare a configuration signal cfg_thresh as
(* anyconst *). How will the SAT solver determine the value of this
signal during a proof?
o It will assign a random valid value to cfg_thresh at the start of the run.
o It will iterate through every possible value of cfg_thresh sequentially
(0, 1, 2...) until the proof finishes.

o It will treat cfg_thresh as a constant, but it will
mathematically search for and select the specific value (if one
exists) that causes an assertion to fail.

o It will default the value to 0 to keep the initial state clean.
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Let's Practice!
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Formally Verifying an AXI FIFO

@ For some hands-on practice, let's try to
verify an AXI Stream FIFO formally.

@ https://github.com/rpetersb54/
AXI-FIFO-Formal Includes a set of
bugged FIFOs and a formal verification
scaffold.

@ The CARP Docker container should come
with all the tools you need to run the lab.

@ | included a link to install the tools
natively if the docker does not work.

% S e T s I s I s O s O s IO

o_rdy / //
i_vid //

i_data I
i_rdy //

o_vid //

odata 20 Y

Figure: AXI Write and Read Transaction
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https://github.com/rpeters54/AXI-FIFO-Formal
https://github.com/rpeters54/AXI-FIFO-Formal

Bug 1 - Overfill and Underfill

@ The first bugged FIFO acts as if it always has data, but is never full.

@ How can we prove that this behavior is incorrect?

o_rdy

i_vid /—\—/—\—
L data 7/, "/
i_rdy I\

o_vid

o_data 77777 707777

Figure: First Bugged FIFO
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Bug 2 - Corrupted Data

@ The second bugged seems to begin corrupting data after a few transactions.

@ How can we prove that this behavior is incorrect?

i_data X %%
i_rdy I [
o_vid - W
o_data 774 V%

Figure: Second Bugged FIFO
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Bug 3 - Dead FIFO

@ This FIFO does absolutely nothing.

@ How can we prove that this behavior is incorrect?

ek [ L] L L L7 L7 [_1 |
o_rdy //
i_vid //

i_data //
i_rdy //
o_vid /

o_data U

Figure: Third Bugged FIFO
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Try Out Induction

o After filling in the missing assertions, check your work against the key to make sure you
have everything.

@ Below the blanks are some strengthening assertions that make it possible for induction to
pass.

@ Try out the unbounded proof and verify it passes for the reference model.
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Thank You

Questions?
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