CARP Meeting

MULTIPLIER/DIVIDER 2
RV32l & RV32IM

Ideal Register / Flip Flop

e Samples Data perfectly on clock edge
o Instantaneous Capture on Perfect Edge

e Immune to noise before and after edge

e Always holds a known binary value
o QOorl

e Datais instantly made available to output

CLK

Real Register Part 1 Glossary

Setup Time t_: data must be stable t,

: before edge
e Takes some time to sample data -

Hold Time t;: data must be stable b,

after edge
e Requires data to be stable during that time
o Setup Time: min time before the edge
that data must remain stable
o Hold Time: min time after the edge that
data must remain stable
Ck
1
tsetup «le—>thold
D ; D E
o E o |
=y o ! —
> Q : clock-Q X
Clkm{>c 1

Real Register Part 2

e If signal is not stable, risk metastability
o Register will risk incorrect data, or even
worse get stuck

e Once sampled, takes some time to

propagate to the output
2 clock-to-Q propagation delay

Glossary
Metastability: register gets stuck

between 0 and 1 states for unknown
amount of time

Clock T

Rising Edge
tsu
<« >
Data In to
Flip-Flop
Data Out of %
Flip-Flop / 4
<« >
Metastable

Max Path: Setup Time Violations

Max Path asks the question:
o Is your critical path logic too slow to
keep up with your clock?
Setup Time Violation: logic is too slow
such that data changes past setup time
period
o Fixable by lowering clock frequency
o Or use faster logic
Usable Portion of Clock Period:

t . <t -t -1
ogic clock “setup cq

CK

Min Path: Hold Time Violations

e Min Path asks the question:

O Is your minimum logic path so
fast that one register’s output '—tcl \
will change before the next one o ot changes here before
has completed hold time? the second latch is ready
e Hold Time Violation: input to —[o
register will change before register is
done with its hold time —(O T o
e Not affected by Clock Speed, only
by design | N ey [
O NOT FIXABLE AFTER TAPEOUT
o Have to tell the tools — U=

(Openlane) to try harder to fix

Slack -
i

e Slack is the amount of leeway between your design’s timing and a
design constraint
e Max Path:
o Positive Slack means you are passing your timing requirement.
m With a positive slack of 3, you could speed up your clock
frequency by up to 3
o Zero Slack means you are passing but with no wiggle room
o0 Negative Slack means you are violating setup time.
m To fix, slow down your clock frequency by the amount of
negative slack
e Min Path is not affected by clock frequency
o Negative Slack in your min path is a hold time violation, which
the tools will need to fix by inserting dummy logic
e Computing: Slack = Required Time - Arrival Time
o S=R-A

STA Example

UFF1

D Q

—CK

UFF2

—

\

\
\

\

_—

—

—

UNANDO

UOR4_

UBUF2

--—-——-"’ﬁ i
\ , B |

S~

UOR2

Delays:

e Buffer:1

e NAND:1

e 3-Input NAND: 2
e OR:2

Clock Period: 5

UFF3

D Q—

>CK

HARDWARE PERFORMANCE
TRADEOFFS FOR DUMMIES

COMBINATIONAL = MORE HARDWARE (do everything at once)
- Critical Path = longest logic chain between registers

- Setup Time = time to get through all the logic to the register
- Hold Time = time to hold the data while register captures it

SEQUENTIAL = LESS HARDWARE (do everything in steps, reuse hardware)
- |PC goes way down depending on # of cycles wasted in calculation
- Sometimes worth the cost if hardware too complex

REMEMBER: Critical Path determines CLK frequency

LETS BUILD HARDWARE LIKE
A 34 GRADER!

How does a child

multiply two ‘ REPEATED
numbers? ADDITION
How does a child
. . ‘ REPEATED
divide two
SUBTRACTION

numbers?

BINARY MULTIPLICATION:

Algorithm: SHIFT-ADD

01001 (9)
X 011 (3)

BINARY DIVISION

01001/ (9)
011 (3)

How to handle SIGNED
STEPS

1. CONVERT SIGNED INPUTS TO
UNSIGNED (take absolute value)

2. MULTIPLY/DIVIDE UNSIGNED

3. NEGATE THE RESULT AT THE END

How to avoid the extremes

A combinational multiply and divide is a lot of hardware cost,
especially when we’re considering a hardware limited ASIC
implementation for our design.

Let’s get the best of both worlds
Perform multiplication in steps
Perform each step combinationally

INSTEAD OF a big combinational multiplier, or a recursive
multiplier with a stall..

RECURSIVE MUL

> STALL

BIG MUL

PIPELINE!!!!

DO A COMBINATIONAL MULTIPLY ACROSS 3 STAGES!!
31 possible shifts, 32 possible adds

32 bits handled across 3 stages = 10.67 shift-adds per stage (11)
Results in best performance vs logic depth

MUL_E | = | MUL_M | ®» | MUL_D

_ J _ J _

	Slide 1: CARP Meeting 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: HARDWARE PERFORMANCE TRADEOFFS FOR DUMMIES
	Slide 10: LETS BUILD HARDWARE LIKE A 3rd GRADER!
	Slide 11: BINARY MULTIPLICATION:
	Slide 12: BINARY DIVISION
	Slide 13: How to handle SIGNED
	Slide 14: How to avoid the extremes
	Slide 15: PIPELINE!!!!

