
ARM Architecture

Is RISC and CISC Still an Important Distinction?

High Level Program

```
int main()
// Variable declaration
int a, b, sum;
// Take two numbers as input from the
user
scanf("%d %d", &a, &b);
// Add the numbers and assign the value
// to some variable
sum = a + b;
// Use the calculated value
printf("%d\n", sum);
return 0:
// End of program
```

Low Level Machine Instructions

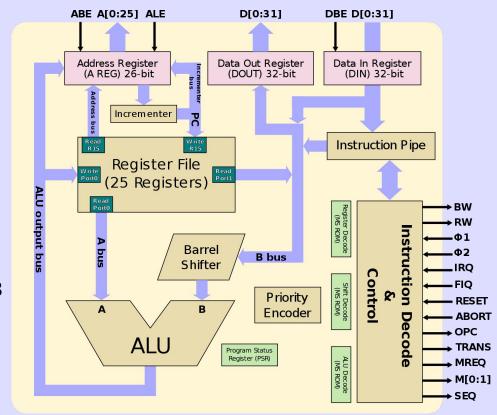
CISC (x86) vs. RISC (ARM) ISA

Complex Instruction Set Computing(CISC)

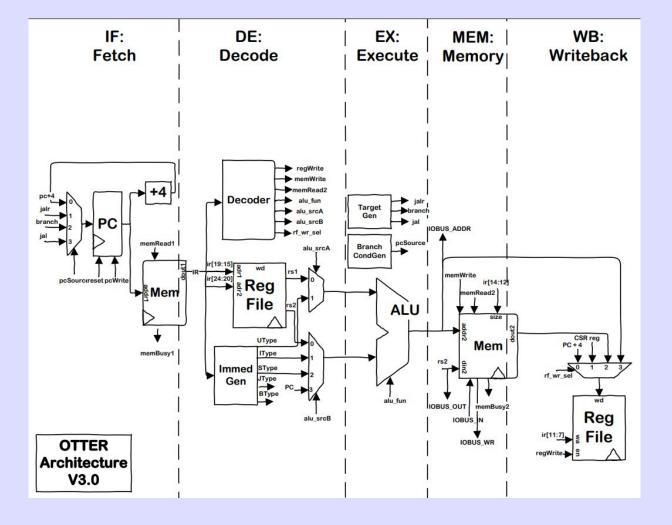
- Has a larger, more complex set of variable-length instructions that can perform multiple operations in a single instruction but often require multiple cycles to execute
- o Intel and AMD (x86)

Reduced Instruction Set Computing (RISC)

- Uses a small, simple, fixed-length instruction set designed to execute,
 with simpler hardware and efficient pipelining.
- RISCV and ARM

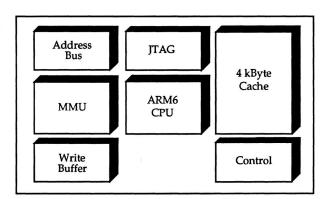

ISA (Instruction Set Architecture)

The Set of all instructions a CPU can run. The ISA is a specification.


- Introduced in 1985
- 45 instructions 32 bit instructions
- No support for multiplication, or FPUs
- However, the addressing mode uses a 26-bit address space, which combines a 24-bit address with 2 additional bits for processor flags (e.g., mode bits). This limits the directly addressable memory to bytes, or 64 MB
- Movement instructions to move immedients and values in registers
- There's 45 instructions and 23 mnemonics
- Was only used on the Arm1 and a couple of thousand chips were ever created

Arm1

- Introduced in 1985
- 3 um process
- Some instructions take 5 cycles
- 8 million instructions/s
- Limited hardware (single ALU
- Some instructions will take 5 cycles instead of 3
- Store takes 5
- Execute will compute the addr and then data



- Introduced in 1986
- 58 instructions 24 mnemonics
- Added multiply and coprocessor instructions
- Coprocessor instructions to move, load, store data when working with coprocessors

Arm 610

- Apple Newton MessagePad 100 (1993)
- Apple invested in Acorn Computers who developed a specific ARM6-based RISC processor for the device

- High performance RISC
 15 MIPS sustained @ 20 MHz (20 MIPS peak)
- Memory Management Unit (MMU) support for virtual memory systems
- 4 kByte of instruction & data cache
- Write Buffer enhancing performance
- Fully static operation low power consumption ideal for power sensitive applications

- Fast sub microsecond interrupt response for real-time applications
- Excellent high-level language support
- Big and Little Endian operating modes
- IEEE 1149.1 Boundary Scan
- 144 Thin Quad Flat Pack (TQFP) package

- Introduced in 1991
- 32-bit address space, allowing direct access to up to 4 GB of memory.
- ARMv3 introduced support for virtual memory, enabling compatibility with modern operating systems that rely on memory management units (MMUs).
- ARMv3 included a compatibility mode to support the 26-bit addresses of earlier versions of the architecture. This compatibility mode optional in ARMv4, and removed entirely in ARMv5.
- Issue instructions to coprocessors without waiting on there execution enabling parallel processing
- Approximately 70 instructions

- Introduced in 1998
- Thumb (ARMv4T only) A 16-bit compressed instruction set that improved code density for embedded systems. Only available in ARMv4T, not in standard ARMv4.
- Halfword and Signed Data Load/Store Operations: ARMv4 added support for loading and storing halfword data types, as well as signed byte and halfword data, which improved the handling of smaller data types in memory operations.
- New Privilege Mode: It introduced an additional kernel-level privilege mode, enhancing the architecture's capability to handle operating system-level tasks more efficiently.
- Enhanced Instruction Set: The instruction set was expanded with features like folding shifts and rotates into arithmetic and logical operations, allowing for more compact and efficient code execution
- ARMv4 included a general coprocessor interface that allowed external FPUs (FPV1)
- ARMv4 (without Thumb): ~90–100 instructions
- **ARMv4T (with Thumb):** ~120–140 total (counting both ARM & Thumb)

Arm Thumb Extension - 1997

Background:

- Arm supports "predication", in which many instructions reserve opcode bits to function as a built in conditional
- Eliminating the need for explicit branch instructions that depend on predicting which path will be taken.
 This reduces the penalties related to branch misprediction, such as pipeline flushes and stalls, and allows smoother instruction flow.

Thumb mode

- Processor can switch to 16 bit instruction mode, allowing 2x the instructions to fit in the 32 bit instruction cache
- Tradeoff is: no predication, only explicit branch instructions

Thumb 2 released in 2003

 Introduced some 32 bit instructions to Thumb mode

	Instruction	least sig. bit of DPC	From	To Thumb
m	bx \$reg blx \$reg	1	ARM/Thumb	
	ldm Sreg, {, Spc} ldr Spc, Sreg	0	AKM/IIIIIII	
111	Marithus	0/1	ARM	Thumb
	F 8698197 6 43 TF 1.08 30	- (recent pry - males)	Thumb	A D M
and the same of th	STREET, 18 CK LIN ST	Rt : shreat	R6 80	R0 R1
	polymeria an all the control of	** E	80	102
1000	8000'001 18 18 100 00 8000'012 18 40 120 00	-turcompetitude - Bit 2	RI RI RS	RO R6 R5
The second second	PROPERTY OF ALL SERVICES	65 1 T1 1 00 100 101 107 10	FG	85
	DESCRIPTION OF PARTY OF RE	iet .	69.	- 90
1	\$65,6716.70 SE 1,00 NO	TRAINED COURSE	67	HZ
	\$6000000 18-56 18-6 18-6 28	(85) 81 (40) man		P8 -
Contract of the Contract of th				
The second secon	perference of the section of the	17, *00014	More in	12000
THE PERSON	BRIDGIST TRANS 1886 - 41	. 10	TAILS IN	rage
THE PERSON NAMED IN	INDEPENDENT OF PARTY BY PERSON AND ADDRESS.	2	Do a pointe (10°)	Bad Form (6

Arm Thumb

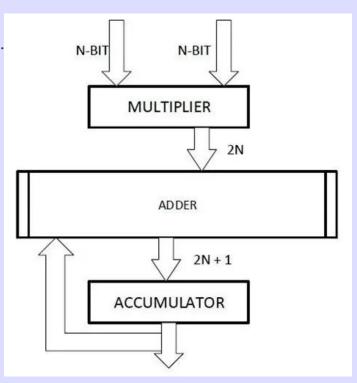
"The **Thumb** instruction set is a subset of the most commonly used 32-bit **ARM** instructions.**Thumb** instructions are 16 bits long,and have a corresponding 32-bit **ARM** instruction that has the same effect on processor model."

What is the ARM Thumb Instruction set? - Stack Overflow Stack Overflow

Feedback

- Introduced in 1998
- Thumb-2 Instruction Set: ARMv5 extended support for the Thumb instruction set, which allows for higher code density by using 16-bit instructions alongside 32-bit instructions. This improvement made ARMv5 more efficient for embedded systems with limited memory.
- DSP Enhancements: ARMv5TE introduced new Digital Signal Processing (DSP) instructions, such as signed multiply-accumulate and saturated arithmetic operations.
- FPv2 was introduced as an optional extension in ARMv5TE and ARMv5TEJ.
 This FPU supported IEEE 754-compliant single- and double-precision floating-point operations,
- Improved Exception Handling
- Enhanced Multiply Instructions: New multiply instructions were introduced, including support multiply-accumulate, which reduced the number of cycles required for such computations
- Total (ARM + Thumb): ~150–160 instructions
- With Optional VFP (Floating Point): ~180+

Multiply and Accumulate (MAC HArdware)

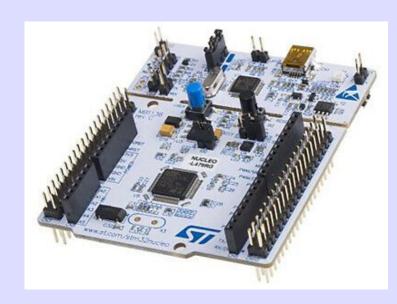

The multiply-accumulate operation involves two main steps:

- 1. **Multiply**: Compute the product of two numbers (operands).
- 2. **Accumulate**: Add the product to a running total (accumulator). This operation can be mathematically represented as:

accumulator=accumulator+(A×B)

accumulator=accumulator+(A×B)

MLA R0, R1, R2, R3 \Leftrightarrow MUL R0, R1, R2 ADD R0, R0, R3



Armv6

- SIMD Extensions: Boosted multimedia performance for audio, video, and 3D graphics.
- Better Memory Handling: Allowed unaligned data access, mixed-endian systems, and improved caches for faster performance.
- Multiprocessing Support: Added instructions for synchronization and shared memory in multiprocessor systems (e.g., LDREX/STREX).
- Debugging Features: Introduced a formal debug architecture for easier external debugging.
- Multimedia Optimization: Improved video encoding and motion estimation for better media processing
- ARM mode: ~130-150
- Thumb mode: ~40–50
- With SIMD & DSP extensions: ~170–200
- With VFP (Optional Floating Point Unit): ~200–250

Armv7

- Introduced in 2005
- Profiles for Different Applications: A,R,M
- Thumb-2 Technology combed 16-bit and 32-bit instructions, reducing memory usage by up to 31% while improving performance by up to 38%.
- NEON SIMD Extensions
- TrustZone Security Expansion
- Advanced Memory Management: Added features like the Large Physical Address Extension (LPAE) for addressing up to 40-bit physical memory and improved cache policies for better performance.
- Total (ARM + Thumb + Thumb-2, without optional VFP and NEON): ~200-250
- With Optional VFP & NEON: ~300–350

Cortex M4

Cortex-A15

Cortex-A17

Cortex-A57

High Performance

Cortex-A9

Cortex-A7

Cortex-A53

High **Efficiency**

Cortex-R4 Real-time standard

Cortex-R5 Functional safety

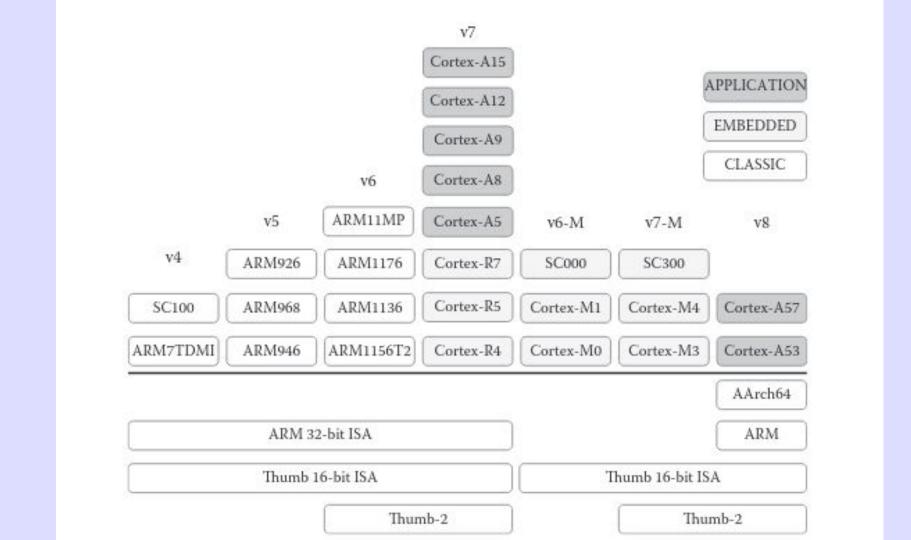
Cortex-R7 High performance 4G modern and storage

Real-time

Enhanced system integration features

Cortex-MO Lowest cost Lowest power

> Cortex-MO+ Highest energy


Cortex-M3

Cortex-M4 Control & DSP

Cortex-M7 Control & DSP

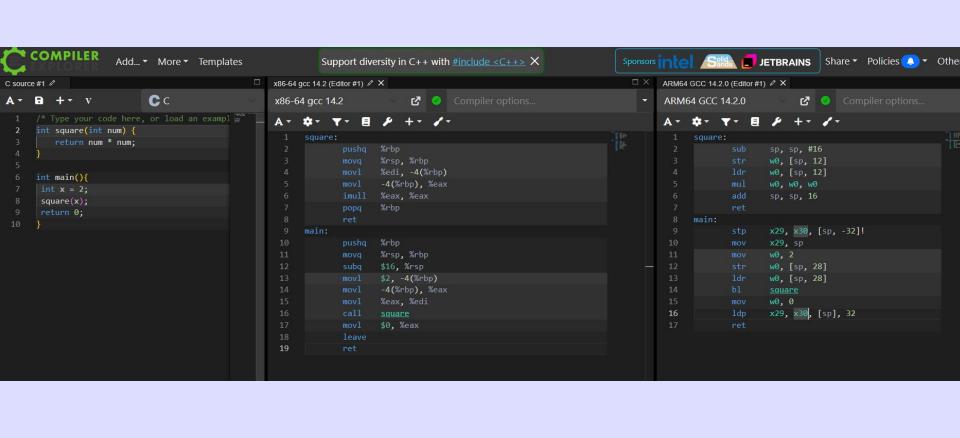
Control

Feature	Cortex-M4	Cortex-A	Cortex-R
Application Focus	Microcontroller, embedded control	High-performance application cores	Real-time, safety-critical systems
Pipeline Complexity	Simple 3-stage, in-order	Complex, superscalar, out-of-order	Medium complexity, dual/triple-issue
Clock Speed	Up to ~300 MHz	1 GHz to 3+ GHz	Up to 600 MHz and beyond
MMU Support	No	Full MMU for virtual memory	Optional MMU, Memory Protection Unit
OS Support	Real-time OS, bare-metal	Full OS (Linux, Android, Windows)	RTOS and safety-critical OS
Virtualization Support	No	Yes	Limited or no
Floating-Point Unit (FPU)	Optional single-precision	Single and double-precision FPU	Optional
DSP Extensions	Yes	Advanced SIMD & NEON	DSP instructions, error correction
Error Correction & Fault Tol	Basic error handling	Not typically prioritized	Lockstep cores, ECC, fault detection
Power Consumption	Low	Higher (performance tradeoff)	Moderate (performance & reliability tradeoff)
Interrupt Latency	Low, deterministic	Higher	Very low, deterministic
Target Use Cases	Low power embedded control	Smartphones, tablets, networking	Automotive, industrial, medical devices

 64-bit Architecture (AArch64): ARMv8 introduced a 64-bit execution mode, enabling larger memory addressing and improved performance for high-end applications while retaining backward compatibility with 32-bit (AArch32) code.

Doubling the instructions.

- Improved Performance: Enhanced instruction sets, including support for SIMD and cryptographic operations, boosted performance for multimedia and security applications.
- Virtualization Support: Added hardware-assisted virtualization, allowing multiple operating systems to run efficiently on the same hardware.
- TrustZone Security: Extended TrustZone technology to ARMv8-M for embedded systems.
- Enhanced Debugging and Memory Management.
- A64 base instruction set contains 354 instructions, with additional sets for SIMD (404) and SVE (508) instructions

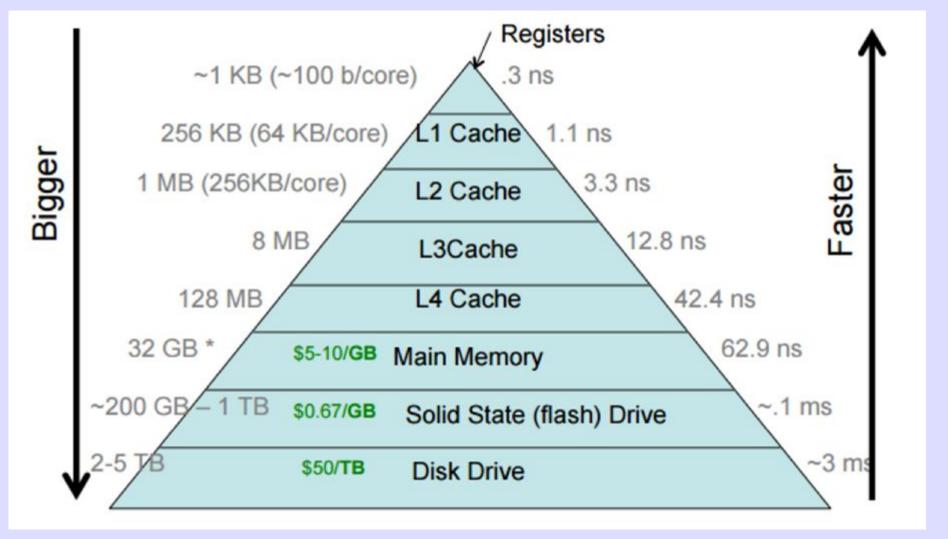

- Introduced in 2021
- SVE2: Improved vector processing for AI, ML, and DSP.
- Security: Added Realm Management (RME) for confidential computing and Memory Tagging (MTE) for memory safety.
- Performance: Promised up to 30% better performance over ARMv8 with improved efficiency.
- Transactional Memory (TME): Enhanced multi-threaded performance.
- System-Level Optimizations: Focused on better cache and memory management.

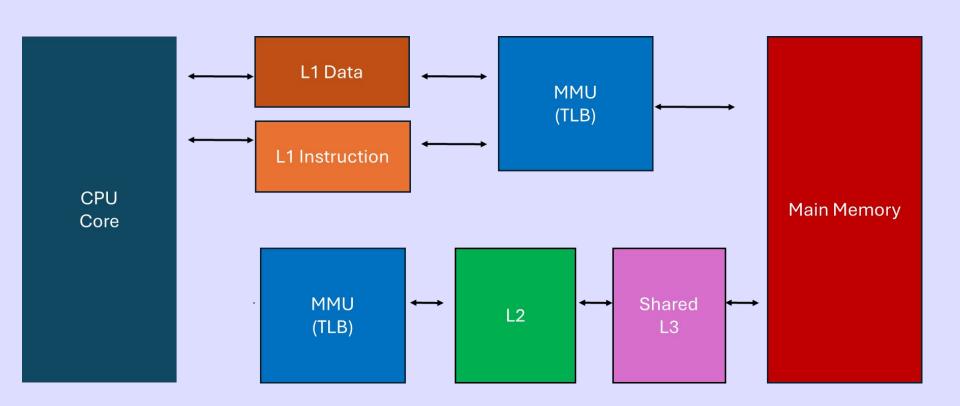

IS ARM CISC or RISC?

If you include every extension in an ARMv9 the total number of instructions would exceed 1,500.

If you only count the operators in the reference materials, there are over 1500 unique instructions in Modern X86 (1)

What's Really The Difference between ARM and Intel ISA?





How much space Does the Function Take Up>

```
/* Type your code here, or load an example. */
int square(int num) {
    return num * num;
}

int main(){
    int x = 2;
    square(x);
    return 0;
}
```


NAME	ONE-SIZE	ALL-SIZE	WAYS	TYPE	LEVEL	SETS	PHY-LINE	COHERENCY-SIZE	
L1d	32K	64K	8	Data	1	64	1	64	
L1i	32K	64K	8	Instruction	1	64	1	64	
L2	256K	512K	8	Unified	2	512	1	64	

3 4096

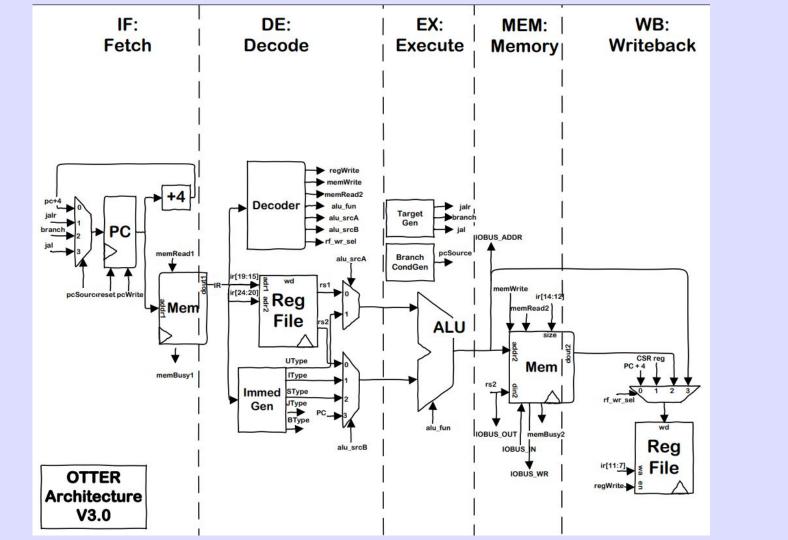
64

12 Unified

[av@think-av ~]\$ lscpu --cache

3M

3M


L3

More Instruction Cache Hits

Variable Instructions
-> Complex Slower
Decodder

ARM64 More Cache Misses

Fixed Instructions -> means faster / more decoders

RISCV Extensions To Run Modern 64bit linux

- RV64I (Base Integer): 47 unique instructions.
- M (Multiply/Divide): 8 instructions.
- A (Atomic): 12 instructions.
- F (Single-Precision Floating Point): ~34 instructions.
- D (Double-Precision Floating Point): ~39 instructions.
- C (Compressed): ~40 instructions (compressed instructions count separately).
- Zicsr (Control/Status Registers): ~6 instructions.
- Zifencei (Instruction Fence): 1 instruction.
- Privileged Instructions (MMU + Supervisor mode):
 ~20-25 unique instructions (syscalls, paging, traps, etc.).

RISCV ISA vs ARM

ISA

Unique Mnemonics

Including Operand Variants (Approx.)

Notes

RISC-V RV64GC + MMU

~212

~400-500

Simpler modular variations, limited operand variants ARMv8-A (AArch64)

~442

1300-2000+

Large operand variants, many SIMD/vector options

The Other Real Difference Business Stuff

Cortex-A15

Cortex-A17

Cortex-A57

High Performance

Cortex-A9

Cortex-A5

Cortex-A7

Cortex-A53

High **Efficiency**

Cortex-R4 Real-time standard

Cortex-R5 Functional safety

Cortex-R7 High performance 4G modern and storage

Real-time

Enhanced system integration features

Cortex-MO+ Highest energy Cortex-M3

Cortex-M4 Control & DSP

Cortex-M7 Control & DSP

Control

Unprecedented Access to Industry-leading IP

CPUs Cortex-A53 Cortex-A35 Cortex-A34 Cortex-A32 Cortex-A7 Cortex-A5 Cortex-R52 Cortex-R8 Cortex-R5 Cortex-M33 Cortex-M23 Cortex-M7 Cortex-M4 Cortex-M3 Cortex-M0+ 75% Cortex-M0 of Arm Cortex licenses over

Processor IP

GPUs

- Mali-G52
- Mali-G31

Includes Mali drivers (DDK)

Interconnect

- CoreLink NIC-450
- CoreLink NIC-400
- CoreLink CCI-400
- CoreLink CCI-500
- CoreLink CCI-550
- ADB-400 AMBA domain bridge
- XHB-400 AXI-AHB

Dhysis

System Controllers

- CoreLink GIC-500
- CoreLink GIC-400
- PL192 VIC
- BP141 TrustZone Mem. Wrapper
- CoreLink TZC-400
- CoreLink L2C-310
- CoreLink MMU-500
- BP140 Mem. Intf.

Security IP

- CryptoCell-312
- CryptoCell-712
- TrustZone True
 Random Number
 Generator

Peripherals

- PL011 UART
- PL022 SPI
- PL031 RTC

Debug & Trace

- CoreSight SoC-400
- CoreSight SDC-600
- CoreSight STM-500
- CoreSight System
 Trace Macrocell
- CoreSight Trace
 Memory Controller

Design Kits

- Corstone-101
- Corstone-201

Tools & Models

- Socrates IP Tooling
- Arm Design Studio
- Virtual system models (fast & cycle accurate)

Support

- Standard Arm technical support
- Arm online training
- Maintenance updates
- Credits towards onsite training and design reviews

Physical IP

- Artisan physical IP platform, TSMC
- Artisan PIK for Cortex-M33, TSMC 22ULL

past 2 years

Exceptionally small silicon area

Download Now

Please register for or login to an Arm Account to download the IP

Cortex-M0

Cortex-M System Design Kit (CMSDK)

Tools and Models

Includes

- 90-day trial of Arm Keil MDK
- 90-day trial of IAR Embedded Workbench
- FPGA prototyping board for Cortex-M

Cortex-M3

For highly deterministic apps

Download Now

Please register for or login to an Arm Account to download the IP

- Cortex-M3
- Corstone-101 reference package which includes SSE-050 subsystem (pre-validated and assembled) and several IP blocks for added security
- 90-day trial of Arm Keil MDK
- 90-day trial of IAR Embedded Workbench
- FPGA prototyping board for Cortex-M
- 1-year access to Cortex-M3 cycle model

(2) only syndiable on CTM221 49vil 4Av devices

AMBA Bus for DMA

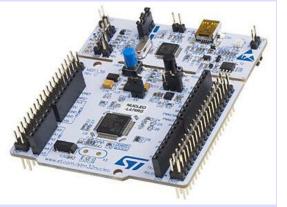
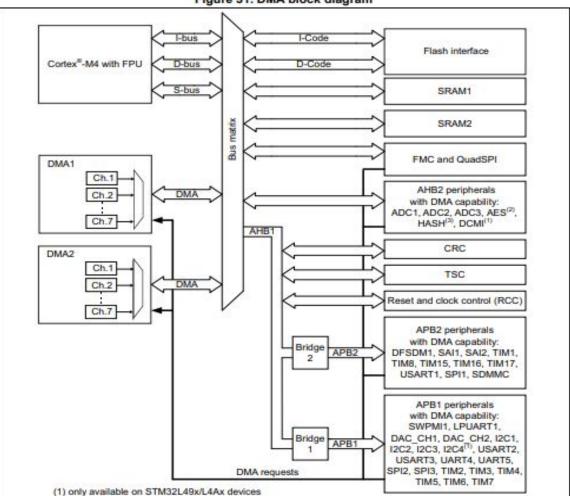
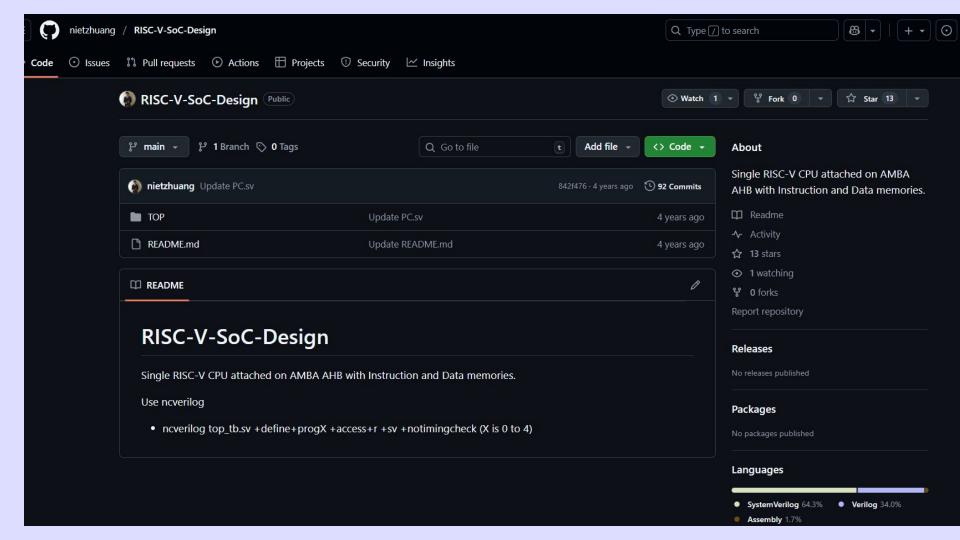




Figure 31. DMA block diagram

Apple Silicon (P/E Cores)

- Apple has an "Architecture License", meaning they design their own Arm compatible core design
 - After starting with mobile arm processors, they transitioned to desktop class
- A reasonable middle ground for consumers
- o Extra effort in terms of compatibility
 - Rosetta
- https://en.wikipedia.org/wiki/Apple_s ilicon

Is RISC and CISC Still an

Important Distinction In

Modern Architecture?

NO

END

Extra Content

Flexibility (examples and extensions)

SSE (Intel x86) vs. NEON (ARM)

- Extensions of SIMD to compute large amount of a data in parallel, for the GPU poor
 - Store vectors in registers and operate on vectors simultaneously
 - Multi-cycle instructions -> One instruction
- New Registers:
 - Sixteen new 128-bit registers (XMM0-XMM15)
 - eXtended MultiMedia
- Data Types Supported in Registers:
 - Packed single-precision (32-bit) floats
 - Eq: { f1, f2, f3, f4 }
- Instruction Categories:
 - Arithmetic, Data Movement, Bitwise
 Operations, Data Shuffling

- New Registers:
 - Sixteen new 128-bit registers (Q0-Q15)
 - Quadword (register width)
 - Can be accessed as 32 64-bit
 (D0-D31) or 64 32-bit (S0-S63)
- Data Types Supported in Registers:
 - Packed single-precision (32-bit) floats
 - Packed 8-bit, 16-bit, 32-bit, and 64-bit integers.
- Instruction Categories:
 - Arithmetic, Data Movement, Bitwise
 Operations, Data Shuffling

SSE (Intel x86) vs. NEON (ARM) - C Data Types

Read as

Sixteen new 128-bit registers

- Multimedia
- 128: Number of bits in the vector register

```
__m128 // Represents a 128-bit vector for single-precision floating-point values __m128i // Represents a 128-bit vector for integer values __m128d // Represents a 128-bit vector for double-precision floating-point values
```

```
typedef uint8x16 t uint8x16 t;
typedef int8x16 t int8x16 t;
typedef uint16x8 t uint16x8 t;
typedef int16x8 t int16x8 t;
typedef uint32x4 t uint32x4 t;
typedef int32x4 t int32x4 t; // 4 signed 32-bit
integers
typedef uint64x2 t uint64x2 t; // 2 unsigned
64-bit integers
typedef int64x2 t int64x2 t; // 2 signed 64-bit
integers
typedef float32x4 t float32x4 t; // 4 32-bit
floating point
typedef float64x2_t float64x2_t; // 2 64-bit
floating point
```

SSE (Intel x86) vs. NEON (ARM) - Vector Multiplication in C

- Extensions of SIMD to compute large amount of a data in parallel, for the GPU poor
 - Multi-cycle instructions -> One instruction

```
#include <xmmintrin.h>

void vector_multiply_sse(float* a, float* b, float*
result, int size) {
   for (int i = 0; i < size; i += 4) {
        __m128 va = _mm_loadu_ps(a + i);
        __m128 vb = _mm_loadu_ps(b + i);
        __m128 vresult = _mm_mul_ps(va, vb);
        _mm_storeu_ps(result + i, vresult);
   }
}</pre>
```

```
#include <arm_neon.h>

void vector_multiply_neon(float* a, float* b,
float* result, int size) {
   for (int i = 0; i < size; i += 4) {
      float32x4_t va = vld1q_f32(a + i);
      float32x4_t vb = vld1q_f32(b + i);
      float32x4_t vresult = vmulq_f32(va, vb);
      vst1q_f32(result + i, vresult);
   }
}</pre>
```

Arm Thumb Extension - 1997

Background:

 Arm supports "predication", in which many instructions reserve opcode bits to function as a built in conditional

Thumb mode

- Processor can switch to 16 bit instruction mode, allowing 2x the instructions to fit in the 32 bit instruction cache
- Tradeoff is: no predication, only explicit branch instructions

Thumb 2 released in 2003

 Introduced some 32 bit instructions to Thumb mode

Arm Thumb

"The **Thumb** instruction set is a subset of the most commonly used 32-bit **ARM** instructions. **Thumb** instructions are 16 bits long,and have a corresponding 32-bit **ARM** instruction that has the same effect on processor model."

What is the ARM Thumb Instruction set? - Stack Overflow Stack Overflow

Feedback

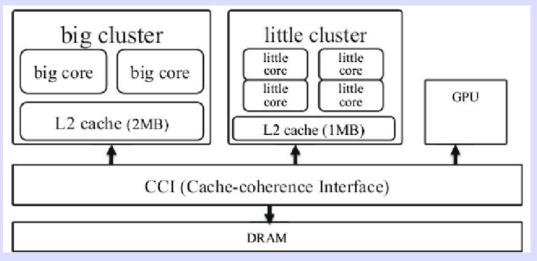
Arm Jazelle - 2001

• Jazelle - A Hardware Java Virtual Machine

- Specialized instructions that support Java bytecode
- Stuff like hardware array bounds checking
- Replaced by ThumbEE

• ThumbEE (2005-2011)

- Optimized for Dynamically Generated code (interpreted or JIT compiled)
- Mostly replaced by better compile/runtime
 optimizations, but the hardware still does a lot to make that possible


Core Designs

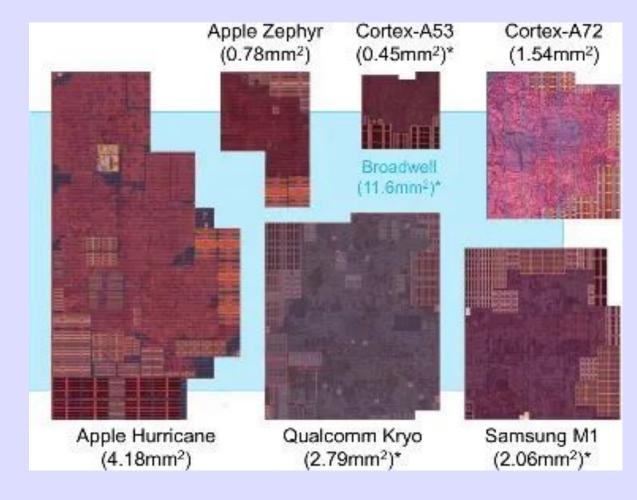
Arm big.LITTLE

• Straight from the horse's mouth:

"big.LITTLE technology is a heterogeneous processing architecture that uses up to three types of processors." LITTLE" processors are designed for maximum power efficiency, while "big" processors are designed to

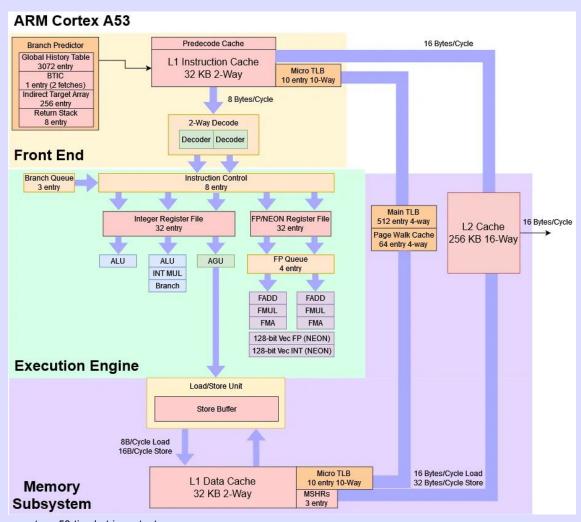
provide sustained compute performance."

How much processor do I need?

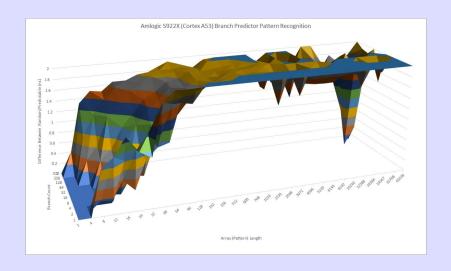

Throughput / Multicore Performance Latency /
Single Core
Performance

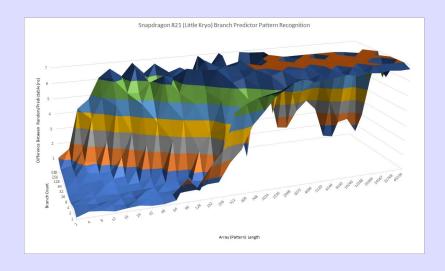
Compatibility

Power Efficiency


Die Shots of ARM Cores

- All are 64-bit ARMv8
 - Excluding the x86
 Broadwell core in the back
- All are single cores
 - (no main memory, peripherals, accelerators, etc)
- And all are totally different.




Cortex A53

- 64-bit Armv8-A architecture
- one to four cores
- "automatic data cache coherency"
 - All parallel cores see same cached data, no matter how bad your program is
- (up to) 2MB L2 cache shared across cores
- Pipeline facts
 - 8-stages (fairly low #)
 - "symmetric dual-issue"
 - 2 instructions at once (plus the pipeline queueing)
 - o "In-order"
 - Hardware does not reorder or rearrange queued instructions in the event of stalls or dependencies

Cortex A53 vs Snapdragon 821 (Little Kryo) Branch Predictor

Apple Silicon (P/E Cores)

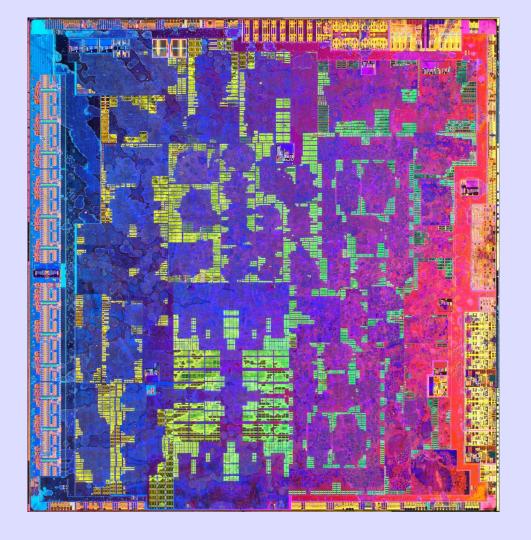
- Apple has an "Architecture License", meaning they design their own Arm compatible core design
 - After starting with mobile arm processors, they transitioned to desktop class
- A reasonable middle ground for consumers
- o Extra effort in terms of compatibility
 - Rosetta
- https://en.wikipedia.org/wiki/Apple_s ilicon

Ampere Altra Max

- More powahh
- Architecture Design License
- 128-core Arm CPU, with support for up to 16 bit floating pt instructs

Samsung Exynos M1

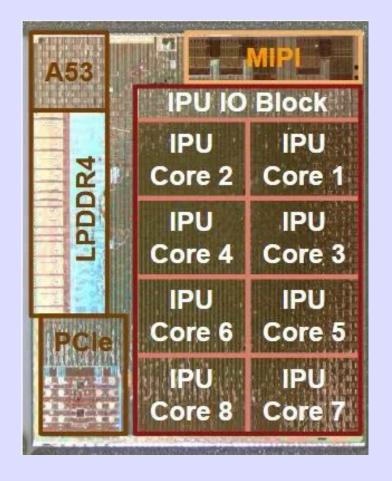
- Good link, actual details on the architecture inside
- https://www.anandtech.com/show/10590/ hot-chips-2016-exynos-m1-architecture-disclosed
- Samsung cancelled their ARM core development in 2019, reopened in 2024


4B

Chips with Cores

Nvidia Tegra X1 - 2015

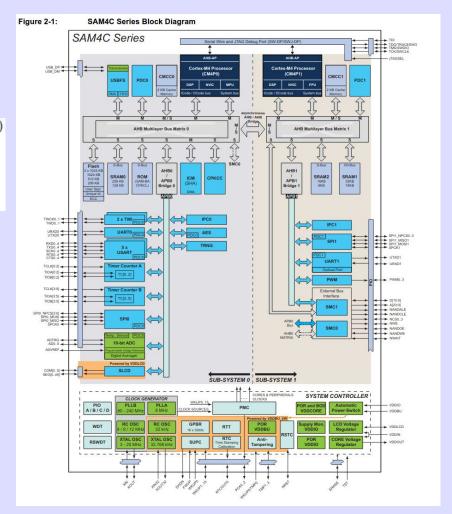
- 4x ARM Cortex A53
 - Low power efficiency cores
- 4x ARM Cortex A57
 - High power **gaming** cores
- 2x Nvidia Maxwell SM GPUs
 - o for **gaming**



Google Pixel Visual Core - 2018

- 1x ARM Cortex A53
 - Manages the star of the show
- 8x Google IPU Cores
 - Is the star of the show
- MIPI Camera Interface
- LPDDR4 RAM
- PCIE
 - For getting the data somewhere useful

ATSAM4C32 Smart Meter Processor


- Landis+Gyr Residential Power Meter
- Uses ATSAM4C32 Processor
 - "Dual Arm® Cortex® -M4 Core SOC with Advanced Security Features for Residential and C&I Smart Meters"

ATSAM4C32 Smart Meter Processor

- · Coprocessor (provides ability to separate application, communication or metrology functions)
 - ARM Cortex-M4F running at up to 120 MHz⁽¹⁾
 - IEEE® 754 Compliant, Single-precision Floating-Point Unit (FPU)
 - DSP Instruction
 - Thumb-2 instruction set
 - Instruction and Data Cache Controller with 2 Kbytes of Cache Memory

- Segment LCD Controller
- AES and RSA Accelerators
- Integrity Check Monitor
 - Uses DMA to continuously compare checksums of memory regions

And the entire STM32 line

0

- Implementation License
- o Power Efficiency and Cost optimized
- https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html