
ARM Architecture

Is RISC and CISC Still
an Important
Distinction?

CISC (x86) vs. RISC (ARM) ISA

● Complex Instruction Set Computing(CISC)
○ Has a larger, more complex set of variable-length instructions that can

perform multiple operations in a single instruction but often require

multiple cycles to execute

○ Intel and AMD (x86)

● Reduced Instruction Set Computing (RISC)
○ Uses a small, simple, fixed-length instruction set designed to execute ,

with simpler hardware and efficient pipelining.

○ RISCV and ARM

ISA (Instruction Set Architecture)

The Set of all instructions a CPU can run. The ISA is
a specification.

● Introduced in 1985
● 45 instructions 32 bit instructions
● No support for multiplication, or FPUs
● However, the addressing mode uses a 26-bit address space,

which combines a 24-bit address with 2 additional bits for
processor flags (e.g., mode bits). This limits the directly
addressable memory to bytes, or 64 MB

● Movement instructions to move
immedients and values in registers

● There's 45 instructions and 23
mnemonics

● Was only used on the Arm1 and a couple
of thousand chips were ever created

Arm v1

● Introduced in 1985
● 3 um process
● Some instructions take 5

cycles
● 8 million instructions/s
● Limited hardware (single

ALU
● Some instructions will

take 5 cycles instead of 3
● Store takes 5
● Execute will compute

the addr and then data

Arm1

● Introduced in 1986
● 58 instructions 24 mnemonics
● Added multiply and coprocessor

instructions
● Coprocessor instructions to move, load,

store data when working with
coprocessors

Arm v2

● Apple Newton MessagePad 100 (1993)
● Apple invested in Acorn Computers who

developed a specific ARM6-based RISC
processor for the device

Arm 610

● Introduced in 1991
● 32-bit address space, allowing direct

access to up to 4 GB of memory.
● ARMv3 introduced support for virtual

memory, enabling compatibility with
modern operating systems that rely on
memory management units (MMUs).

● ARMv3 included a compatibility mode to
support the 26-bit addresses of earlier
versions of the architecture. This
compatibility mode optional in
ARMv4, and removed entirely in
ARMv5.

● Issue instructions to coprocessors
without waiting on there execution
enabling parallel processing

● Approximately 70 instructions

Arm v3

● Introduced in 1998
● Thumb (ARMv4T only) – A 16-bit compressed instruction set that improved

code density for embedded systems. Only available in ARMv4T, not in
standard ARMv4.

● Halfword and Signed Data Load/Store Operations: ARMv4 added
support for loading and storing halfword data types, as well as signed
byte and halfword data, which improved the handling of smaller data
types in memory operations.

● New Privilege Mode: It introduced an additional kernel-level privilege
mode, enhancing the architecture's capability to handle operating
system-level tasks more efficiently.

● Enhanced Instruction Set: The instruction set was expanded with
features like folding shifts and rotates into arithmetic and logical
operations, allowing for more compact and efficient code execution

● ARMv4 included a general coprocessor interface that allowed
external FPUs (FPV1)

● ARMv4 (without Thumb): ~90–100 instructions
● ARMv4T (with Thumb): ~120–140 total (counting both ARM & Thumb)

Arm v4

Arm Thumb Extension - 1997

● Background:
○ Arm supports “predication”, in which many

instructions reserve opcode bits to function as
a built in conditional

○ Eliminating the need for explicit branch instructions
that depend on predicting which path will be taken.
This reduces the penalties related to branch
misprediction, such as pipeline flushes and stalls, and
allows smoother instruction flow.

● Thumb mode
○ Processor can switch to 16 bit instruction mode,

allowing 2x the instructions to fit in the 32 bit
instruction cache

○ Tradeoff is: no predication, only explicit branch
instructions

● Thumb 2 released in 2003
○ Introduced some 32 bit instructions to Thumb

mode
https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm--thu
mb--and-thumbee-instruction-sets

● Introduced in 1998
● Thumb-2 Instruction Set: ARMv5 extended support for the Thumb instruction

set, which allows for higher code density by using 16-bit instructions
alongside 32-bit instructions. This improvement made ARMv5 more efficient
for embedded systems with limited memory.

● DSP Enhancements: ARMv5TE introduced new Digital Signal Processing
(DSP) instructions, such as signed multiply-accumulate and saturated
arithmetic operations.

● FPv2 was introduced as an optional extension in ARMv5TE and ARMv5TEJ.
This FPU supported IEEE 754-compliant single- and double-precision
floating-point operations,

● Improved Exception Handling
● Enhanced Multiply Instructions: New multiply instructions were introduced,

including support multiply-accumulate, which reduced the number of cycles
required for such computations

● Total (ARM + Thumb): ~150–160 instructions
● With Optional VFP (Floating Point): ~180+

Arm v5

Multiply and Accumulate (MAC
HArdware)

The multiply-accumulate operation involves two main steps:
1. Multiply: Compute the product of two numbers (operands).
2. Accumulate: Add the product to a running total (accumulator).

This operation can be mathematically represented as:

accumulator=accumulator+(A×B)

accumulator=accumulator+(A×B)

MLA R0, R1, R2, R3 ⇔
MUL R0, R1, R2
ADD R0, R0, R3

● SIMD Extensions: Boosted multimedia performance for
audio, video, and 3D graphics.

● Better Memory Handling: Allowed unaligned data access,
mixed-endian systems, and improved caches for faster
performance.

● Multiprocessing Support: Added instructions for
synchronization and shared memory in multiprocessor
systems (e.g., LDREX/STREX).

● Debugging Features: Introduced a formal debug architecture
for easier external debugging.

● Multimedia Optimization: Improved video encoding and
motion estimation for better media processing

● ARM mode: ~130–150
● Thumb mode: ~40–50
● With SIMD & DSP extensions: ~170–200
● With VFP (Optional Floating Point Unit): ~200–250

Armv6

● Introduced in 2005
● Profiles for Different Applications: A,R,M
● Thumb-2 Technology - combed 16-bit and 32-bit

instructions, reducing memory usage by up to 31% while
improving performance by up to 38%.

● NEON SIMD Extensions
● TrustZone Security Expansion
● Advanced Memory Management: Added features like the

Large Physical Address Extension (LPAE) for addressing up
to 40-bit physical memory and improved cache policies for
better performance.

● Total (ARM + Thumb + Thumb-2, without optional VFP and
NEON): ~200–250

● With Optional VFP & NEON: ~300–350

Armv7

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important
https://soclabs.org/technology/cortex-a53

Cortex M4

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important
https://soclabs.org/technology/cortex-a53

● 64-bit Architecture (AArch64): ARMv8 introduced
a 64-bit execution mode, enabling larger memory
addressing and improved performance for
high-end applications while retaining backward
compatibility with 32-bit (AArch32) code.
Doubling the instructions.

● Improved Performance: Enhanced instruction
sets, including support for SIMD and
cryptographic operations, boosted performance
for multimedia and security applications.

● Virtualization Support: Added hardware-assisted
virtualization, allowing multiple operating
systems to run efficiently on the same hardware.

● TrustZone Security: Extended TrustZone
technology to ARMv8-M for embedded systems.

● Enhanced Debugging and Memory Management.
● A64 base instruction set contains 354

instructions, with additional sets for SIMD (404)
and SVE (508) instructions

Arm v8

● Introduced in 2021
● SVE2: Improved vector processing for AI,

ML, and DSP.
● Security: Added Realm Management

(RME) for confidential computing and
Memory Tagging (MTE) for memory
safety.

● Performance: Promised up to 30% better
performance over ARMv8 with improved
efficiency.

● Transactional Memory (TME): Enhanced
multi-threaded performance.

● System-Level Optimizations: Focused on
better cache and memory management.

Arm v9

IS ARM CISC or RISC?

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important
https://soclabs.org/technology/cortex-a53

If you include every extension in an ARMv9 the total number of
instructions would exceed 1,500.

If you only count the operators in the reference materials, there
are over 1500 unique instructions in Modern X86 (1)

What’s Really The
Difference between
ARM and Intel ISA?

How much space Does the
Function Take Up>

/* Type your code here, or load an example. */

int square(int num) {

 return num * num;

}

int main(){

 int x = 2;

 square(x);

 return 0;

}

ARM -> 56 Bytes

x86 -> 47 Bytes

X86 More Instruction
Cache Hits

Variable Instructions
-> Complex Slower
Decodder

ARM64 More Cache Misses

Fixed Instructions ->
means faster / more
decoders

RISCV Extensions To Run Modern
64bit linux

● RV64I (Base Integer): 47 unique instructions.
● M (Multiply/Divide): 8 instructions.
● A (Atomic): 12 instructions.
● F (Single-Precision Floating Point): ~34 instructions.
● D (Double-Precision Floating Point): ~39

instructions.
● C (Compressed): ~40 instructions (compressed

instructions count separately).
● Zicsr (Control/Status Registers): ~6 instructions.
● Zifencei (Instruction Fence): 1 instruction.
● Privileged Instructions (MMU + Supervisor mode):

~20–25 unique instructions (syscalls, paging, traps,
etc.).

ISA
Unique Mnemonics
Including Operand Variants (Approx.)
Notes
RISC-V RV64GC + MMU
~212
~400-500
Simpler modular variations, limited operand variants
ARMv8-A (AArch64)
~442
1300-2000+
Large operand variants, many SIMD/vector options

RISCV ISA vs ARM

The Other Real
Difference
Business Stuff)

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important
https://soclabs.org/technology/cortex-a53

LICENSING

AMBA Bus for DMA

Apple Silicon (P/E Cores)

○ Apple has an “Architecture License”,
meaning they design their own Arm
compatible core design

■ After starting with mobile arm
processors, they transitioned to
desktop class

○ A reasonable middle ground for

consumers
○ Extra effort in terms of compatibility

■ Rosetta
○ https://en.wikipedia.org/wiki/Apple_s

ilicon

Is RISC and CISC Still an
Important Distinction In
Modern Architecture?
NO

END

Flexibility (examples and
extensions)

Extra Content

SSE (Intel x86) vs. NEON (ARM)

● Extensions of SIMD to compute large amount of a data in parallel, for the GPU poor
○ Store vectors in registers and operate on vectors simultaneously
○ Multi-cycle instructions -> One instruction

● New Registers:
○ Sixteen new 128-bit registers

(XMM0–XMM15)
■ eXtended MultiMedia

● Data Types Supported in Registers:
○ Packed single-precision (32-bit) floats

■ Eg: { f1, f2, f3, f4 }
● Instruction Categories:

○ Arithmetic, Data Movement, Bitwise
Operations, Data Shuffling

● New Registers:
○ Sixteen new 128-bit registers (Q0–Q15)

■ Quadword (register width)
■ Can be accessed as 32 64-bit

(D0–D31) or 64 32-bit (S0–S63)
● Data Types Supported in Registers:

○ Packed single-precision (32-bit) floats
○ Packed 8-bit, 16-bit, 32-bit, and 64-bit

integers.
● Instruction Categories:

○ Arithmetic, Data Movement, Bitwise
Operations, Data Shuffling

__m128 // Represents a 128-bit vector for

single-precision floating-point values

__m128i // Represents a 128-bit vector for integer

values

__m128d // Represents a 128-bit vector for

double-precision floating-point values

typedef uint8x16_t uint8x16_t;

typedef int8x16_t int8x16_t;

typedef uint16x8_t uint16x8_t;

typedef int16x8_t int16x8_t;

typedef uint32x4_t uint32x4_t;

typedef int32x4_t int32x4_t; // 4 signed 32-bit

integers

typedef uint64x2_t uint64x2_t; // 2 unsigned

64-bit integers

typedef int64x2_t int64x2_t; // 2 signed 64-bit

integers

typedef float32x4_t float32x4_t; // 4 32-bit

floating point

typedef float64x2_t float64x2_t; // 2 64-bit

floating point

SSE (Intel x86) vs. NEON (ARM) - C Data Types

Read as
Sixteen new 128-bit registers

○ Multimedia
○ 128: Number of bits in the vector register

#include <xmmintrin.h>

void vector_multiply_sse(float* a, float* b, float*

result, int size) {

 for (int i = 0; i < size; i += 4) {

 __m128 va = _mm_loadu_ps(a + i);

 __m128 vb = _mm_loadu_ps(b + i);

 __m128 vresult = _mm_mul_ps(va, vb);

 _mm_storeu_ps(result + i, vresult);

 }

}

#include <arm_neon.h>

void vector_multiply_neon(float* a, float* b,

float* result, int size) {

 for (int i = 0; i < size; i += 4) {

 float32x4_t va = vld1q_f32(a + i);

 float32x4_t vb = vld1q_f32(b + i);

 float32x4_t vresult = vmulq_f32(va, vb);

 vst1q_f32(result + i, vresult);

 }

}

SSE (Intel x86) vs. NEON (ARM) - Vector Multiplication in C

● Extensions of SIMD to compute large amount of a data in parallel, for the GPU poor
○ Multi-cycle instructions -> One instruction

Arm Thumb Extension - 1997

● Background:
○ Arm supports “predication”, in which many

instructions reserve opcode bits to function as
a built in conditional

● Thumb mode
○ Processor can switch to 16 bit instruction mode,

allowing 2x the instructions to fit in the 32 bit
instruction cache

○ Tradeoff is: no predication, only explicit branch
instructions

● Thumb 2 released in 2003
○ Introduced some 32 bit instructions to Thumb

mode

https://developer.arm.com/documentation/dui0473/m/overview-of-the-arm-architecture/arm--thu
mb--and-thumbee-instruction-sets

● Jazelle - A Hardware Java Virtual Machine
○ Specialized instructions that support Java

bytecode

○ Stuff like hardware array bounds checking

○ Replaced by ThumbEE

● ThumbEE (2005-2011)
○ Optimized for Dynamically Generated code

(interpreted or JIT compiled)

○ Mostly replaced by better compile/runtime

optimizations, but the hardware still does a lot to

make that possible

Arm Jazelle - 2001

Core Designs

Arm big.LITTLE

● Straight from the horse’s mouth:

“big.LITTLE technology is a
heterogeneous processing architecture
that uses up to three types of processors.
”LITTLE” processors are designed for
maximum power efficiency,
while “big” processors are designed to
provide sustained compute
performance.”

How much processor do I need?

Latency /
Single Core
Performance

Power Efficiency

Throughput /
Multicore
Performance

Compatibility

52

● All are 64-bit
ARMv8

○ Excluding the x86
Broadwell core in
the back

● All are single cores
○ (no main memory,

peripherals,
accelerators, etc)

● And all are totally
different.

Die Shots of ARM Cores

https://chipsandcheese.com/p/kryo-qualcomms-last-in-house-mobile-core

● 64-bit Armv8-A architecture
● one to four cores
● “automatic data cache coherency”

○ All parallel cores see same cached data, no
matter how bad your program is

● (up to) 2MB L2 cache shared across cores
● Pipeline facts

○ 8-stages (fairly low #)
○ “symmetric dual-issue”

■ 2 instructions at once (plus the pipeline
queueing)

○ “In-order”
■ Hardware does not reorder or rearrange

queued instructions in the event of stalls
or dependencies

Cortex A53

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important
https://soclabs.org/technology/cortex-a53

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important

Cortex A53 vs Snapdragon 821
(Little Kryo) Branch Predictor

https://chipsandcheese.com/p/arms-cortex-a53-tiny-but-important

Apple Silicon (P/E Cores)

○ Apple has an “Architecture License”,
meaning they design their own Arm
compatible core design

■ After starting with mobile arm
processors, they transitioned to
desktop class

○ A reasonable middle ground for

consumers
○ Extra effort in terms of compatibility

■ Rosetta
○ https://en.wikipedia.org/wiki/Apple_s

ilicon

Ampere Altra Max

○ More powahh

○ Architecture Design License

○ 128-core Arm CPU, with support for
up to 16 bit floating pt instructs

● Good link, actual details on the
architecture inside

● https://www.anandtech.com/show/10590/
hot-chips-2016-exynos-m1-architecture-di
sclosed

● Samsung cancelled their ARM core
development in 2019, reopened in 2024

Samsung Exynos M1

https://www.anandtech.com/show/10590/hot-chips-2016-exynos-m1-architecture-disclosed
https://www.anandtech.com/show/10590/hot-chips-2016-exynos-m1-architecture-disclosed
https://www.anandtech.com/show/10590/hot-chips-2016-exynos-m1-architecture-disclosed

Chips with Cores
4B

Nvidia Tegra X1 - 2015

● 4x ARM Cortex A53
○ Low power efficiency cores

● 4x ARM Cortex A57
○ High power gaming cores

● 2x Nvidia Maxwell SM GPUs
○ for gaming

Google Pixel Visual Core - 2018

● 1x ARM Cortex A53
○ Manages the star of the show

● 8x Google IPU Cores
○ Is the star of the show

● MIPI Camera Interface
● LPDDR4 RAM
● PCIE

○ For getting the data somewhere

useful

● Landis+Gyr Residential Power
Meter

● Uses ATSAM4C32 Processor
○ “Dual Arm® Cortex® -M4 Core SOC

with Advanced Security Features
for Residential and C&I Smart
Meters”

https://wiki.recessim.com/view/Advanced_Metering_Infrastructure

ATSAM4C32 Smart Meter Processor

ATSAM4C32 Smart Meter Processor

● Segment LCD Controller
● AES and RSA Accelerators
● Integrity Check Monitor

○ Uses DMA to continuously compare

checksums of memory regions

https://ww1.microchip.com/downloads/aemDocuments/documents/SE/ProductDocuments/DataS
heets/SAM4C-Series-DS60001717.pdf

And the entire STM32 line

○ Implementation License
○
○ Power Efficiency and Cost optimized
○ https://www.st.com/en/microcontroll

ers-microprocessors/stm32-32-bit-ar
m-cortex-mcus.html

